Constrained Optimization

Group members: Xinyi Hu; Yiting Liu; Zhiwei Hu

Definition: In mathematical optimization, constrained optimization is the process of optimizing an objective function with respect to some variables in the presence of constraints on those variables.

Constrained Least Squares:

Definition: The constrained least squares problem combines the problems of solving a set of linear equations with the least squares problems.

Format: A general constrained minimization problem may be written as follows:

$$
\begin{aligned}
& \text { Minimize }\|A x-b\|^{2} \\
& \text { Subject to } C x=d
\end{aligned}
$$

Solution Methods:

(1)Lagrange Multipliers:

For the case of only one constraint and only two choice variables consider the optimization problem

$$
\text { maximize } f(x, y) \text { subject to } g(x, y)=0
$$

We assume that both f and g have continuous first partial derivatives. We introduce a new variable (λ) called a Lagrange multiplier (or Lagrange undetermined multiplier) and study the Lagrange function (or Lagrangian or Lagrangian expression) defined by

$$
\mathcal{L}(x, y, \lambda)=f(x, y)-\lambda g(x, y)
$$

Then we set the derivatives $\frac{\partial \mathcal{L}}{\partial x}$ and $\frac{\partial \mathcal{L}}{\partial y}$ and $\frac{\partial \mathcal{L}}{\partial \lambda}$ to zero.Solve these equations for $\mathrm{x}, \mathrm{y}, \lambda$ will gain the maximize of $f(x, y)$. And this method of can be extended to solve problems with multiple constraints using a similar argument.
$\mathcal{L}\left(x_{1}, \ldots x_{n}, \lambda_{1}, \ldots, \lambda_{M}\right)=f\left(x_{1}, \ldots x_{n}\right)-\sum_{k=1}^{M} \lambda_{k} g_{k}\left(x_{1}, \ldots x_{n}\right)$
$\nabla_{x_{1}, \ldots, x_{n}, \lambda_{1}, \ldots, \lambda_{M}} \mathcal{L}\left(x_{1}, \ldots, x_{n}, \lambda_{1}, \ldots, \lambda_{M}\right)=0 \Longleftrightarrow\left\{\begin{array}{l}\nabla f(\mathbf{x})-\sum_{k=1}^{M} \lambda_{k} \nabla g_{k}(\mathbf{x})=0 \\ g_{1}(\mathbf{x})=\cdots=g_{M}(\mathbf{x})=0\end{array}\right.$

(2)QR Factorization:

Given the KKT equations, it can be rewrite as

$$
2\left(A^{T} A+C^{T} C\right) \hat{x}+C^{T} w=a A^{T} b
$$

where $w=\hat{z}-2 d$. By solving the function

$$
R \hat{x}=Q_{1}^{T} b-(1 / 2) Q_{2}^{T} w
$$

We can get the solution of \hat{x}.

Application:

A time-varying linear dynamical system: $X_{t+1}=A_{t} x_{t}+B_{t} u_{t}, t=1,2, \ldots \ldots$. This system has an output: $y_{t}=$ $C_{t} x_{t}, t=1,2 \ldots \ldots$. Linear quadratic control refer to the problem of choosing the input and state sequence, so as to minimize a sum of squares objective, subject to the dynamics equation, the output equations and additional linear equality constraints.
The objective function $. J=J_{\text {outbut }}+\rho J_{\text {input }}$,

$$
\begin{array}{rll}
J_{\text {output }} & =\left\|y_{1}\right\|^{2}+\cdots+\left\|y_{T}\right\|^{2}=\left\|C_{1} x_{1}\right\|^{2}+\cdots+\left\|C_{T} x_{T}\right\|^{2}, & \text { minimize } \\
J_{\text {input }} & =\left\|u_{1}\right\|^{2}+\cdots+\left\|u_{T-1}\right\|^{2} & \begin{array}{l}
J_{\text {output }}+\rho J_{\text {input }} \\
\text { subject to } \\
x_{t+1}=A_{t} x_{t}+B_{t} u_{t}, t
\end{array}, t=1, \ldots, T-1 \\
x_{1}=x^{\text {init }}, \quad x_{T}=x^{\text {des }},
\end{array}
$$

We can solve this question by changing it into least squares formulation.

