Solution to Assignment 3

MATH7502 2019, Semester 2

Assignment 3 questions (https://courses.smp.uqg.edu.au/MATH7502/2019/ass3.pdf)

Solution to Question 1

(a) The weighted least squares problem can be writen as trying to approximatly solve the equations Ax = b
where each row (each i'th equation) is scaled by a strictly postive w;. This can be written as minimization of

||DAx — Db||* = ||D(Ax — b)||?,

where D is an m X m diagonal matrix with diagonal elements /W7, ..., /W,,. Thus it is a the standard least
squares problem minimizing ||Bx — d||* where B = DA and d = Db.

(b) Take an x with DAXx = 0 (we aim to show that X must be the 0 n-vector). Since D is square and non-singular
we can multiply both sides by D! to get, AX = 0. However, by assumption A has linearly independent
collumns then the only solution to Ax = 0 is x = 0. This means that x = 0. Hence the only element in the null-
space of DA is 0 and hence DA has linearly independent collumns.

(c) Using B and d we have

x=B'B)'B'd = (ATD"DA)'ATD" Db = (ATWA) AT Wb,
where W = DT D = D? is the diagonal matrix of weights.

Solution to Question 2

(a) We know that the X that solves the normal equations A’ Ax = AT b, is given by
x=A"b=R'Q"b.

Now AX is the "predicated" value, closest to b within the collumn space of A. Using A = QR it is given by,

AX=ORR'0"b = 00"b.

https://courses.smp.uq.edu.au/MATH7502/2019/ass3.pdf

(b) Using the above and ||u — v||* = u’u — 2u”v + vT'v, we have,

1Az = b||> = |1QQ"b — b||? = (QQTbh — H)T(QQTb — b) = (QQTH)'QQ"b — 26T QQTb + bTb.

This equals:
b 00" 00"b - 2(Q"H)" Q" b + |1b]I
and using QT Q = I we have,
b 00 b —2(0"H)" 0 b + (161> = (Q"H)Q"b - 2(Q"H)" Q" b + ||bI|* = —11Q"bII* + |15] I,

as desired.

Solution to Question 3
Forx = (x1,X,), we aim to fit:f(x) =a+byx; +byx, + clx]2 + czx% + c3X1 %

(@) We have f D(x), ... ,f ©(x) as follows:

f(l)(_x) =1
f(z)(x) = X1
f(3)(x) =X

f(4)(x) = xlz
f(s)(_x) = x%
O =xx

Now the i'th row of the n X 6 design matrix A has the form

FPw P P FP0 O FOw,

where x is the i'th data point.

Further,
B=1la b by c; ¢ 3]".

Then given data x and y we wish to minimize,
11AB — yl|*.

In [1]: fl(x) =1
f2(x) = x[1]
£3(x) = x[2]
fa(x) = x[1]"72
f5(x) = x[2]"2
f6(x) = x[1]1*x[2]
fs = [f1,£f2,£3,f4,f5,f6] #an array of functions
£(x,3) = £s[31(x)

Out[l]: f (generic function with 1 method)

In [2]: using LinearAlgebra
x1Grid = -5:0.1:5

x2Grid = -5:0.1:5
n = length(x1Grid)*length(x2Grid)
xvals = [[x1,x2] for x1 in x1Grid, x2 in x2Grid];

xflat = reshape(xvals,n)
A = [f(x,]) for x in xflat, j in 1:6];

AA = [8 3; 3 11]; d = [1,1];

yOfX(x) = (x-d)'*AA*(x-d) + 30cos(10x[1])*cos(10x[2])
y = yOfX. (xflat);

betaHat = pinv(A)*y

println("Estimates of (a,bl,b2,cl,c2,c3): ", betaHat)

Estimates of (a,bl,b2,cl,c2,c3): [24.9965, -22.0, -28.0, 8.00025, 11.0
002, 6.0]

(c) Observe that A is symmetric and consider (x — d)TA(x — d). Expanding it equals,
xTAx — 2x"Ad + d" Ad.

Now treating the entries of A and d in the standard manner (a;;, a2, a» , d; , d>) this equals,
anx; + 2a1x1% + anxy — 2Aaydy + appndy)x; — 2and, + aynd)x, +di(ardy + appdy) + dy(arpd; 4

These coefficients may now be equated with the estimated a, b and ¢ values. For simplificty let's round the
estimated values: to (25,-22,-28,8,11,6). This also Kills the 'noise' from 30cos(10x[1])*cos(10x[2]).

We now have:
aj; =c =8.
ay =cy = 11.
2a1p =c3 =6 = app =3.
Hence we see the matrix A is exactly reconstructed (this works because it is symmetric).
Further:
—2(a;1dy + apdr) =by =-22 = 8dy +3d, =11

Similarly,
—2(a12d1 + Clzzdz) = b2 = -28 = 3d1 + 11d2 = 14.

Solving these linear equations for d; andd, wegetd; = 1 andd, = 1.

Hence we see that by removing the noise we are exactly able to reconstruct the matrix A and vector d!

Solution to Question 4

We first experiment numerically to determine the eigenvalues and then show analytically that these hold.

In [3]: using LinearAlgebra
eigvals(ones(1l,1))

Out[3]: l-element Array{Float64,1}:
1.0

In [4]: eigvals(ones(2,2))

Out[4]: 2-element Array{Float64,1}:
0.0
2.0

In [5]: eigvals(ones(3,3))

Out[5]: 3-element Array{Float64,1}:
-5.624168597199657e-16
7.305347407387203e-18
2.9999999999999996

In [6]: eigvals(ones(4,4))

Out[6]: 4-element Array{Float64,1}:
-5.660001591138239e-16
-1.2325951644078312e-32

1.0888646801245488e-17
3.999999999999999

In [7]: eigvecs(ones(4,4))

Out[7]: 4x4 Array{Float64,2}:

-0.408248 0.707107 -0.288675 -0.5
-0.408248 -0.707107 -0.288675 -0.5
0.816497 -8.75605e-17 -0.288675 -0.5
0.0 0.0 0.866025 =-0.5

Hence we believe:

Set A = 117 an n X n matrix of all 1's. Then the eigenvalues are n, 0, 0, ..., 0. The fact that n — 1 of the
eigenvalues are 0 is not surprising. This is because the rank of the matrix is 1 and hence the rank of the null-
space is n — 1. This means that to get,

Ax=0x=0
we can take x # O as any of the vectors from an n — 1 dimensional sub-space which is the null-space.

Now for the eigenvalue equalling n we can guess than an eigenvector is 1. Observe:
1171 = nl.
Hence n is an eigenvalue.

Note that an alternative way to solve this problem is to directly consider det(117 — AI). Using determinant
operations it can be shown to be,

/In_l(n —A).
Here is a crude computational check:
In [8]: characteristicPolynomiall(A,n) = det(ones(n,n) - A*I)
characteristicPolynomial2(A,n) = A" (n-1)*(n-\)
n=2>5
lamGrid = -2n:0.1:2n

maximum(abs. (characteristicPolynomiall.(lamGrid,n) .- characteristicPoly
nomial2. (lamGrid,n)))

Out[8]: 2.9103830456733704e-11

Solution to Question 5

By trying out several attempts it appears that the mean spectral radius is n/2. That is:

Conjecture: Take an n X n matrix with entries that are i.i.d. uniform(0,1) values. Denote the eigenvalues
A1, A2, ..., A,. And denote

o = max |4;|.
i=1,....,n

The E[o] = n/2.

In [9]: using Random, LinearAlgebra, Plots, Statistics

pyplot()
Random.seed! (0)

N = 1074
nRange = 1:20

eigR(n) = maximum(abs.(eigvals(rand(n,n))))
meanEst(n) = mean([eigR(n) for in 1:N])

ests = [meanEst(n) for n in nRange]
conj(n) = n/2

scatter(nRange, [ests,con]j. (nRange)],legend = false, xlabel = "n", ylabel
= "spectral radius")

out[9]: 10

= o
o
o
o
B o
o
o
L
= o
= L
= 6 o
b o
e °
b
o o
@
o 4t o
5]
o
o
o
Zr (<]
o
o
o i i i i
5 10 15 20

Solution to Question 6

(a) To compute the eigenvalues consider the characteristic polynomial and equate to O (this should hold for
every $\theta):

(cos@ —)? +sin?0 =0

or,
cos? @ —24cosO+ A% +sin20=0
or
A —=2cosPA+1=0
Hence,

1
A1p =cosf + E\/400829—4 = cosf + \/00329— 1 =cosf+ \/—sin29=cosﬁii|sin0| =cosf =

Remember ¢ = cos @ + isin 6.

Let Ay be the rotation matrix. To find eigenvectors consider:
Apgx = ¢x.

Set the second coordinate of x to be 1 hence the first equation from the above reads:

(cos O)x; — sin @ = (cos O)x; + i(sin O)x; .

Hence x; = —1/i = i/(—ii) = i. Thus an eigenvector corresponding to ¢ is x = [i, 1]7 and thus a normalized
oneis (1/4/2)[i, 117.

Similarly, a noramlized eigenvector corresponding to e~ is (1/4/2)[1, i]7.

Here is a test...

In [10]: A(O) = [cos(0) -sin(0); sin(0O) cos(9)]
0 = pi/6
eigvals(A(0))

cannot define function A; it already has a value

Stacktrace:
[1] top-level scope at In[10]:1

In [11]: exp(im*0),exp(-im*0)
UndefVarError: 0 not defined

Stacktrace:
[1] top-level scope at In[ll]:1

In [12]: x1 = [im,1]/sqrt(2);
A(0)*x1 - exp(im*0)*x1

UndefVarError: 0 not defined

Stacktrace:
[1] top-level scope at In[l2]:2

In [13]: x2 = [1,im]/sqrt(2);
A(0)*x2 - exp(-im*0)*x2

UndefVarError: 0 not defined

Stacktrace:
[1] top-level scope at In[1l3]:2

(b) Trace = 2 cos @. Sum of eigenvalues = cos @ + isinf + cosd — isinf = 2 cos 6.

(c) Det = cos? @ + sin? 8 = 1. Product of eigenvalues = ¢if¢™0 = ¢0 = 1.

Solution to Question 7

Looking at AB and BA we have,
AB = (XAlX‘1><XA2X‘1> = XA AX

BA = (XAZX‘1><XA1X‘1> = XAA X

Hower A; A, = A, A because these matrices are diagonal. Hence AB = BA.

Solution to Question 8

(@) The rank of A is 1 with

e[=

1

Now look at
W=AM=l5 1ﬂ.
10 20
The characteristic polynomial of Wis (5 — 4)(20 — 1) — 100 = 42 — 251 = A(4 — 25).

Hence eigenvalues are 4 = 0 and 4 = 25. Hence the singular value is 6; = /25 = 5.

We can now guess that the SVD has to be of the form,
A=Ux5xVT

and hence given the structure of A we can set U = [2/4/5 1/v/5]T andV=U = [1/v/5 2/4/5]" which
happen to be normed vectors.

Here is a sanity check with Julia:

In [14]: using LinearAlgebra
A =102 4; 1 2]
F svd(A)
println("Singular value: ", F.S[1])
#1t turns out that svd() in Julia chooses the negative of it
println("U:",F.U[:,1]," or ", [2/sqgrt(5),1/sqrt(5)1])
println("v:",F.U[:,1]," or ", [1/sqgrt(5),2/sqrt(5)1)

Singular value: 5.000000000000001
U:[-0.894427, -0.447214] or [0.894427, 0.447214]
V:[-0.894427, -0.447214] or [0.447214, 0.894427]

(b) To explore, let's take a different approach for the rank 1 matrix B. We know the sum of the eigenvalues of
BT Bisits trace. The (1, 1) element of BTBis 2 X 2 4+ 8 X 8 = 68. The (2, 2) element is

(=1) X (=1) + (=4) X (=4) = 17. Hence the trace is 68 + 17 = 85. Now since the matrix B’ B is of rank 1
one of the eigenvalues is 0 and the other must be 85. Hence the singular value is v/85 ~ 9.21954.

Here is a sanity check:
In [15]: B = [2 -1; 8 -4];
svdvals(B)

Out[15]: 2-element Array{Float64,1}:
9.219544457292887
7.944109290391273e-16

Now we compute matching normalized eigenvectors for B'Bto get

1 |-2 1
Vzﬁll 2]'

Now look at BBT and get matching eigenvectors:

1 [-1 -4
U=—[
V1T |14 1
In [16]: B
Out[1l6]: 2x2 Array{Inté64,2}:
2 -1
8 -4

In [17]: V = [-2 1 ;1 2]/sqrt(5);
U= [-1 -4; -4 1]1/sqrt(17);
2 = [sqrt(85) 0 ; 0 07];

U*Z*Vv'
Out[17]: 2x2 Array{Floaté64,2}:

2.0 -1.0
8.0 -4.0

(c) The explicit computation of SVD for A + B is messy.

In [18]: A+B

Out[18]: 2x2 Array{Inté64,2}:

4 3
9 -2

In [19]: F = svd(A+B)
F.U

Out[19]: 2x2 Array{Float64,2}:
-0.382683 -0.92388
-0.92388 0.382683

In [20]: Diagonal(F.S)

Out[20]: 2x2 Diagonal{Float64,Array{Float64,1}}:
9.87048
3.54593

In [21]: F.V

Out[21]: 2x2 Adjoint{Float64,Array{Float64,2}}:
-0.997484 -0.070889
0.070889 -0.997484

In [22]: F.U*Diagonal(F.S)*F.V'

Out[22]): 2x2 Array{Floaté64,2}:
4.0 3.0
9.0 -2.0

Solution to Question 9

(a) Since A is non-singular we have that & = AA” is non-singular. Hence 7! exists and |Z| # 0.

(b) The derivation is based on the explicit inverse of £ (sometimes called the precision matrix). Note that
12| = 012022(1 — p) and, $$

\Sigma~{-1}

\frac{1}{\sigma_1/2\sigma_2/2(1-\rho)} \left[
2

05 —0102p
2
—0102p 04

\right]. $$

After some manipulation the standard expression can be obtained:

-1 [(x—m)2 e mp) O) (y—uz)zl}

fley) = e xexp
, 2n61054/1 — p? 2(1-p?) o? 010, o}

(c) Here are plots:

In [23]: using Plots, LinearAlgebra
pyplot()
ul, w2 =1, 1
ol, 02 = 1.3, 0.8
o =20.7

#direct implementation
fa(x) = (2n*0l*02*sgrt(1-972))"-1 *

exp(-(2*(1-072))"-1 * ((x[1]-pl)"2/01"2 - 20*(x[1]-pl)*(x[2]-p2)/(0l*
02) + (x[2]-p2)"2/02"2))

(M1, p2]
[0172 Q*0l*02;
0*0l*02 0272]

W
>

fb(x) = (2m)"-1 * det(Z)"-0.5 * exp(-0.5%(x-W) ' *inv(Z)*(x-p))

println("Sanity check that both functions fa() and fb() are the same:")
println(fa([0,0]),"\t",fb([0,0]))
println(fa([1,0]),"\t",fb([1,0]))

xGrid = -2:0.1:4
yGrid = -1:0.1:3
pl = surface(xGrid,yGrid, (x1,x2)->fa([x1,x2]),

legend=false,xlabel="x", ylabel="y",camera=(-30,35),size=(50
0,400))
p2 = contour(xGrid,yGrid, (x1,x2)->fa([x1,x2]),

legend=false,xlabel="x", ylabel="y",size=(500,400))
plot(pl,p2,size=(1200,400))

Sanity check that both functions fa() and fb() are the same:

0.09703890701860532 0.0970389070186053
0.04631505318110716 0.04631505318110719
Oout[23]: il

(d) Calculating/estimating P(X < 0,Y < 0):

In [24]: #Using a crude Riemann sum:
0 = 0.001
M 5 #approximates infinity
grid = -M:0:0
sum([fa([x,y])*0"2 for x in grid, y in grid])

Out[24]: 0.07555712725292603

In [25]: #Using Monte-Carlo:
using Distributions
N = 10"7
length(filter((x)->(x[1]<0 && x[2]<0), [rand(MvNormal(u,Z)) for _ in 1:N
1))/N

Out[25]: 0.0754657

Solution to Question 10

The code below is a modification of the code in lecture 1 (also appearing in the [SWJ] book). Note the use of the
modulo (%) operator for obtaining the parity of an integer (0 for even and 1 for odd).

In [26]: using Flux.Data.MNIST, LinearAlgebra
using Flux: onehotbatch

imgs = MNIST.images()
labels = MNIST.labels()

nTrain = length(imgs)
trainData = vcat([hcat(float.(imgs[i])...) for i in 1l:nTrain]...)
trainLabels = labels[1l:nTrain]

testImgs = MNIST.images(:test)
testLabels = MNIST.labels(:test)
testParity = testLabels .% 2 #has 0 for even and 1 for odd

nTest = length(testImgs)
testData = vcat([hcat(float.(testImgs[i])...) for i in 1l:nTest]...)

A = [ones(nTrain) trainData]
Adag = pinv(A)
tfPM(x) = x ? +1 : -1

yDatExplicit(k) = tfPM. (onehotbatch(trainLabels,0:9) '[:,k+1])

bets = [Adag*yDatExplicit(k) for k in 0:9]

classifyExplicitDigit(input) = findmax([([1l ; input])'*bets[k] for k in
1:10]1)[21-1

This is possibility I

classifyParityI(input) = classifyExplicitDigit(input) % 2
predictions = [classifyParityI(testDatal[k,:]) for k in l:nTest]
accuracyl = sum(predictions .== testParity)/nTest
println("Accuracy with method I:", accuracylI)

This is possibility II

yDatParity = tfPM. ((trainLabels .% 2) .== 1)

beta = Adag*yDatParity

classifyParityII(input) = [1 ; input]'*beta > 0 2 1 : 0
predictions = [classifyParityII(testDatalk,:]) for k in 1l:nTest]
accuracyII = sum(predictions .== testParity)/nTest
println("Accuracy with method II:", accuracyII)

Accuracy with method I:0.9283
Accuracy with method II:0.894

As can be seen, method | obtains 92.83% accuracy while method Il (directly training on images labeled as
"odd" or "even" obtains 89.4% accuracy. Hence it appears that method | is superior.

