
Solution to Assignment 3
MATH7502 2019, Semester 2

Assignment 3 questions (https://courses.smp.uq.edu.au/MATH7502/2019/ass3.pdf)

Solution to Question 1

(a) The weighted least squares problem can be writen as trying to approximatly solve the equations
where each row (each 'th equation) is scaled by a strictly postive . This can be written as minimization of

where is an diagonal matrix with diagonal elements . Thus it is a the standard least
squares problem minimizing where and .

(b) Take an with (we aim to show that must be the -vector). Since is square and non-singular
we can multiply both sides by to get, . However, by assumption has linearly independent
collumns then the only solution to is . This means that . Hence the only element in the null-
space of is and hence has linearly independent collumns.

(c) Using and we have

where is the diagonal matrix of weights.

Solution to Question 2

(a) We know that the that solves the normal equations , is given by

Now is the "predicated" value, closest to within the collumn space of . Using it is given by,

Ax = b

i wi

||DAx − Db| = ||D(Ax − b)| ,|2 |2

D m × m , … ,w1‾‾‾√ wm‾ ‾‾√
||Bx − d||2 B = DA d = Db

x ̃ DA = 0x ̃ x ̃ 0 n D

D−1 A = 0x ̃ A

Ax = 0 x = 0 = 0x ̃

DA 0 DA

B d

= (B d = (DA Db = (WA Wb,x ̂ BT)−1BT AT DT)−1AT DT AT)−1AT

W = D =DT D2

x ̂ Ax = bAT AT

= b = b.x ̂ A† R−1 QT

Ax ̂ b A A = QR

A = QR b = Q b.x ̂ R−1 QT QT

https://courses.smp.uq.edu.au/MATH7502/2019/ass3.pdf

(b) Using the above and , we have,

This equals:

and using we have,

as desired.

Solution to Question 3

For , we aim to fit:

(a) We have as follows:

Now the 'th row of the design matrix has the form

where is the 'th data point.

Further,

Then given data and we wish to minimize,

(b)

||u − v| = u − 2 v + v|2 uT uT vT

||A − b| = ||Q b − b| = (Q b − b (Q b − b) = (Q b Q b − 2 Q b + b.x ̂ |2 QT |2 QT)T QT QT)T QT bT QT bT

Q Q b − 2(b b + ||b|bT QT QT QT)TQT |2

Q = IQT

Q b − 2(b b + ||b| = (b b − 2(b b + ||b| = −|| b| + ||b| ,bT QT QT)TQT |2 QT)TQT QT)TQT |2 QT |2 |2

x = (,)x1 x2 (x) = a + + + + +f ̂ b1 x1 b2 x2 c1 x2
1 c2 x2

2 c3 x1 x2

(x), … , (x)f (1) f (6)

(x)f (1)

(x)f (2)

(x)f (3)

(x)f (4)

(x)f (5)

(x)f (6)

= 1

= x1

= x2

= x2
1

= x2
2

= x1 x2

i n × 6 A

[(x) (x) (x) (x) (x) (x)],f (1) f (2) f (3) f (4) f (5) f (6)

x i

β = [a .b1 b2 c1 c2 c3]T

x y

||Aβ − y| .|2

In [1]: f1(x) = 1
f2(x) = x[1]
f3(x) = x[2]
f4(x) = x[1]^2
f5(x) = x[2]^2
f6(x) = x[1]*x[2]
fs = [f1,f2,f3,f4,f5,f6] #an array of functions
f(x,j) = fs[j](x)

In [2]: using LinearAlgebra
x1Grid = -5:0.1:5
x2Grid = -5:0.1:5
n = length(x1Grid)*length(x2Grid)
xvals = [[x1,x2] for x1 in x1Grid, x2 in x2Grid];
xflat = reshape(xvals,n)
A = [f(x,j) for x in xflat, j in 1:6];

AA = [8 3; 3 11]; d = [1,1];
yOfX(x) = (x-d)'*AA*(x-d) + 30cos(10x[1])*cos(10x[2])
y = yOfX.(xflat);
betaHat = pinv(A)*y

println("Estimates of (a,b1,b2,c1,c2,c3): ", betaHat)

(c) Observe that is symmetric and consider . Expanding it equals,

Now treating the entries of and in the standard manner this equals,

These coefficients may now be equated with the estimated , and values. For simplificty let's round the
estimated values: to (25,-22,-28,8,11,6). This also kills the 'noise' from 30cos(10x[1])*cos(10x[2]).

A (x − d A(x − d))T

Ax − 2 Ad + Ad.xT xT dT

A d (, , , ,)a11 a12 a22 d1 d2

+ 2 + − 2(+) − 2(+) + (+) + (+a11 x2
1 a12 x1 x2 a22 x2

2 a11 d1 a12 d2 x1 a12 d1 a22 d2 x2 d1 a11 d1 a12 d2 d2 a12 d1

a b c

Out[1]: f (generic function with 1 method)

Estimates of (a,b1,b2,c1,c2,c3): [24.9965, -22.0, -28.0, 8.00025, 11.0
002, 6.0]

We now have:

Hence we see the matrix is exactly reconstructed (this works because it is symmetric).

Further:

Similarly,

Solving these linear equations for and we get and .

Hence we see that by removing the noise we are exactly able to reconstruct the matrix and vector !

Solution to Question 4

We first experiment numerically to determine the eigenvalues and then show analytically that these hold.

In [3]: using LinearAlgebra
eigvals(ones(1,1))

In [4]: eigvals(ones(2,2))

In [5]: eigvals(ones(3,3))

= = 8.a11 c1

= = 11.a22 c2

2 = = 6 ⇒ = 3.a12 c3 a12

A

−2(+) = = −22 ⇒ 8 + 3 = 11a11 d1 a12 d2 b1 d1 d2

−2(+) = = −28 ⇒ 3 + 11 = 14.a12 d1 a22 d2 b2 d1 d2

d1 d2 = 1d1 = 1d2

A d

Out[3]: 1-element Array{Float64,1}:
 1.0

Out[4]: 2-element Array{Float64,1}:
 0.0
 2.0

Out[5]: 3-element Array{Float64,1}:
 -5.624168597199657e-16
 7.305347407387203e-18
 2.9999999999999996

In [6]: eigvals(ones(4,4))

In [7]: eigvecs(ones(4,4))

Hence we believe:

Set an matrix of all 's. Then the eigenvalues are . The fact that of the
eigenvalues are is not surprising. This is because the rank of the matrix is and hence the rank of the null-
space is . This means that to get,

we can take as any of the vectors from an dimensional sub-space which is the null-space.

Now for the eigenvalue equalling we can guess than an eigenvector is . Observe:

Hence is an eigenvalue.

Note that an alternative way to solve this problem is to directly consider . Using determinant
operations it can be shown to be,

Here is a crude computational check:

In [8]: characteristicPolynomial1(λ,n) = det(ones(n,n) - λ*I)
characteristicPolynomial2(λ,n) = λ^(n-1)*(n-λ)
n = 5
lamGrid = -2n:0.1:2n
maximum(abs.(characteristicPolynomial1.(lamGrid,n) .- characteristicPoly
nomial2.(lamGrid,n)))

Solution to Question 5

A = 11
T n × n 1 n, 0, 0, … , 0 n − 1

0 1

n − 1

Ax = 0x = 0

x ≠ 0 n − 1

n 1

1 1 = n1.1
T

n

det(1 − λI)1
T

(n − λ).λn−1

Out[6]: 4-element Array{Float64,1}:
 -5.660001591138239e-16
 -1.2325951644078312e-32
 1.0888646801245488e-17
 3.999999999999999

Out[7]: 4×4 Array{Float64,2}:
 -0.408248 0.707107 -0.288675 -0.5
 -0.408248 -0.707107 -0.288675 -0.5
 0.816497 -8.75605e-17 -0.288675 -0.5
 0.0 0.0 0.866025 -0.5

Out[8]: 2.9103830456733704e-11

By trying out several attempts it appears that the mean spectral radius is . That is:

Conjecture: Take an matrix with entries that are i.i.d. uniform(0,1) values. Denote the eigenvalues
. And denote

The .

In [9]: using Random, LinearAlgebra, Plots, Statistics
pyplot()
Random.seed!(0)

N = 10^4
nRange = 1:20

eigR(n) = maximum(abs.(eigvals(rand(n,n))))
meanEst(n) = mean([eigR(n) for _ in 1:N])

ests = [meanEst(n) for n in nRange]
conj(n) = n/2

scatter(nRange,[ests,conj.(nRange)],legend = false, xlabel = "n", ylabel
= "spectral radius")

Solution to Question 6

n/2

n × n

, , … ,λ1 λ2 λn

σ = | |.max
i=1,…,n

λi

E[σ] = n/2

Out[9]:

Here is a test...

In [10]: A(θ) = [cos(θ) -sin(θ); sin(θ) cos(θ)]
θ = pi/6
eigvals(A(θ))

In [11]: exp(im*θ),exp(-im*θ)

(a) To compute the eigenvalues consider the characteristic polynomial and equate to (this should hold for
every $\theta):

or,

or

Hence,

Remember .

Let be the rotation matrix. To find eigenvectors consider:

Set the second coordinate of to be hence the first equation from the above reads:

Hence . Thus an eigenvector corresponding to is and thus a normalized
one is .

Similarly, a noramlized eigenvector corresponding to is .

0

(cos θ − λ + θ = 0)2 sin2

θ − 2λ cos θ + + θ = 0cos2 λ2 sin2

− 2(cos θ)λ + 1 = 0λ2

= cos θ ± = cos θ ± = cos θ ± = cos θ ± i sin θ = cos θ ±λ1,2

1

2
4 θ − 4cos2‾ ‾‾‾‾‾‾‾‾‾‾√ θ − 1cos2‾ ‾‾‾‾‾‾‾‾‾√ − θsin2‾ ‾‾‾‾‾‾√ ∣∣ ∣∣

= cos θ + i sin θeiθ

Aθ

x = x.Aθ eiθ

x 1

(cos θ) − sin θ = (cos θ) + i(sin θ) .x1 x1 x1

= −1/i = i/(−ii) = ix1 eiθ x = [i, 1]T

(1/)[i, 12‾√]T

e−iθ (1/)[1, i2‾√]T

cannot define function A; it already has a value

Stacktrace:
 [1] top-level scope at In[10]:1

UndefVarError: θ not defined

Stacktrace:
 [1] top-level scope at In[11]:1

In [12]: x1 = [im,1]/sqrt(2);
A(θ)*x1 - exp(im*θ)*x1

In [13]: x2 = [1,im]/sqrt(2);
A(θ)*x2 - exp(-im*θ)*x2

(b) Trace . Sum of eigenvalues .

(c) Det = . Product of eigenvalues = .

Solution to Question 7

Looking at and we have,

Hower because these matrices are diagonal. Hence .

Solution to Question 8

= 2 cos θ = cos θ + i sin θ + cos θ − i sin θ = 2 cos θ

θ + θ = 1cos2 sin2 = = 1eiθe−iθ e0

AB BA

AB = (X)(X) = X .Λ1X−1
Λ2X−1

Λ1Λ2X−1

BA = (X)(X) = X .Λ2X−1
Λ1X−1

Λ2Λ1X−1

=Λ1Λ2 Λ2Λ1 AB = BA

UndefVarError: θ not defined

Stacktrace:
 [1] top-level scope at In[12]:2

UndefVarError: θ not defined

Stacktrace:
 [1] top-level scope at In[13]:2

(a) The rank of is with

Now look at

The characteristic polynomial of is .

Hence eigenvalues are and . Hence the singular value is .

We can now guess that the SVD has to be of the form,

and hence given the structure of we can set and V = which
happen to be normed vectors.

Here is a sanity check with Julia:

In [14]: using LinearAlgebra
A = [2 4; 1 2]
F = svd(A)
println("Singular value: ", F.S[1])
#it turns out that svd() in Julia chooses the negative of it
println("U:",F.U[:,1]," or ", [2/sqrt(5),1/sqrt(5)])
println("V:",F.U[:,1]," or ", [1/sqrt(5),2/sqrt(5)])

(b) To explore, let's take a different approach for the rank 1 matrix . We know the sum of the eigenvalues of
 is its trace. The element of is . The element is

. Hence the trace is . Now since the matrix is of rank
one of the eigenvalues is and the other must be . Hence the singular value is .

Here is a sanity check:

In [15]: B = [2 -1; 8 -4];
svdvals(B)

Now we compute matching normalized eigenvectors for to get

A 1

A = [] [] .
2

1
1 2

W = A = [] .AT 5

10

10

20
W (5 − λ)(20 − λ) − 100 = − 25λ = λ(λ − 25)λ2

λ = 0 λ = 25 = = 5σ1 25‾‾‾√

A = U × 5 × V T

A U = [2/ 1/5‾√ 5‾√]T U = [1/ 2/5‾√ 5‾√]T

B

BBT (1, 1) BBT 2 × 2 + 8 × 8 = 68 (2, 2)

(−1) × (−1) + (−4) × (−4) = 17 68 + 17 = 85 BBT 1

0 85 ≈ 9.2195485‾‾‾√

BBT

V = [] .
1

5‾√

−2

1

1

2

Singular value: 5.000000000000001
U:[-0.894427, -0.447214] or [0.894427, 0.447214]
V:[-0.894427, -0.447214] or [0.447214, 0.894427]

Out[15]: 2-element Array{Float64,1}:
 9.219544457292887
 7.944109290391273e-16

Now look at and get matching eigenvectors:

In [16]: B

In [17]: V = [-2 1 ;1 2]/sqrt(5);
U = [-1 -4; -4 1]/sqrt(17);
Σ = [sqrt(85) 0 ; 0 0];

U*Σ*V'

(c) The explicit computation of SVD for is messy.

In [18]: A+B

In [19]: F = svd(A+B)
F.U

In [20]: Diagonal(F.S)

In [21]: F.V

BBT

U = [] .
1

17‾‾‾√

−1

−4

−4

1

A + B

Out[16]: 2×2 Array{Int64,2}:
 2 -1
 8 -4

Out[17]: 2×2 Array{Float64,2}:
 2.0 -1.0
 8.0 -4.0

Out[18]: 2×2 Array{Int64,2}:
 4 3
 9 -2

Out[19]: 2×2 Array{Float64,2}:
 -0.382683 -0.92388
 -0.92388 0.382683

Out[20]: 2×2 Diagonal{Float64,Array{Float64,1}}:
 9.87048 ⋅
 ⋅ 3.54593

Out[21]: 2×2 Adjoint{Float64,Array{Float64,2}}:
 -0.997484 -0.070889
 0.070889 -0.997484

In [22]: F.U*Diagonal(F.S)*F.V'

Solution to Question 9

(a) Since is non-singular we have that is non-singular. Hence exists and .

(b) The derivation is based on the explicit inverse of (sometimes called the precision matrix). Note that
 and, $$

\Sigma^{-1}
\frac{1}{\sigma_1^2\sigma_2^2(1-\rho)} \left[

\right]. $$

After some manipulation the standard expression can be obtained:

(c) Here are plots:

A Σ = AAT
Σ

−1 |Σ| ≠ 0

Σ

|Σ| = (1 − ρ)σ2
1 σ

2
2

σ2
2

− ρσ1σ2

− ρσ1σ2

σ2
1

f (x, y) = × exp{ [− +]}1

2πσ1σ2 1 − ρ2‾ ‾‾‾‾‾√

−1

2 (1 −)ρ2

(x −)μ1
2

σ2
1

2ρ (x −) (y −)μ1 μ2

σ1σ2

(y −)μ2
2

σ2
2

Out[22]: 2×2 Array{Float64,2}:
 4.0 3.0
 9.0 -2.0

In [23]: using Plots, LinearAlgebra
pyplot()
μ1, μ2 = 1, 1
σ1, σ2 = 1.3, 0.8
ρ = 0.7

#direct implementation
fa(x) = (2π*σ1*σ2*sqrt(1-ρ^2))^-1 *
 exp(-(2*(1-ρ^2))^-1 * ((x[1]-μ1)^2/σ1^2 - 2ρ*(x[1]-μ1)*(x[2]-μ2)/(σ1*
σ2) + (x[2]-μ2)^2/σ2^2))

μ = [μ1,μ2]
Σ = [σ1^2 ρ*σ1*σ2;
 ρ*σ1*σ2 σ2^2]

fb(x) = (2π)^-1 * det(Σ)^-0.5 * exp(-0.5*(x-μ)'*inv(Σ)*(x-μ))

println("Sanity check that both functions fa() and fb() are the same:")
println(fa([0,0]),"\t",fb([0,0]))
println(fa([1,0]),"\t",fb([1,0]))

xGrid = -2:0.1:4
yGrid = -1:0.1:3
p1 = surface(xGrid,yGrid,(x1,x2)->fa([x1,x2]),
 legend=false,xlabel="x", ylabel="y",camera=(-30,35),size=(50
0,400))
p2 = contour(xGrid,yGrid,(x1,x2)->fa([x1,x2]),
 legend=false,xlabel="x", ylabel="y",size=(500,400))
plot(p1,p2,size=(1200,400))

(d) Calculating/estimating :P(X < 0, Y < 0)

Sanity check that both functions fa() and fb() are the same:
0.09703890701860532 0.0970389070186053
0.04631505318110716 0.04631505318110719

Out[23]:

In [24]: #Using a crude Riemann sum:
δ = 0.001
M = 5 #approximates infinity
grid = -M:δ:0
sum([fa([x,y])*δ^2 for x in grid, y in grid])

In [25]: #Using Monte-Carlo:
using Distributions
N = 10^7
length(filter((x)->(x[1]<0 && x[2]<0), [rand(MvNormal(μ,Σ)) for _ in 1:N
]))/N

Solution to Question 10

The code below is a modification of the code in lecture 1 (also appearing in the [SWJ] book). Note the use of the
modulo (%) operator for obtaining the parity of an integer (0 for even and 1 for odd).

Out[24]: 0.07555712725292603

Out[25]: 0.0754657

In [26]: using Flux.Data.MNIST, LinearAlgebra
using Flux: onehotbatch

imgs = MNIST.images()
labels = MNIST.labels()

nTrain = length(imgs)
trainData = vcat([hcat(float.(imgs[i])...) for i in 1:nTrain]...)
trainLabels = labels[1:nTrain]

testImgs = MNIST.images(:test)
testLabels = MNIST.labels(:test)
testParity = testLabels .% 2 #has 0 for even and 1 for odd

nTest = length(testImgs)
testData = vcat([hcat(float.(testImgs[i])...) for i in 1:nTest]...)

A = [ones(nTrain) trainData]
Adag = pinv(A)
tfPM(x) = x ? +1 : -1
yDatExplicit(k) = tfPM.(onehotbatch(trainLabels,0:9)'[:,k+1])
bets = [Adag*yDatExplicit(k) for k in 0:9]
classifyExplicitDigit(input) = findmax([([1 ; input])'*bets[k] for k in
1:10])[2]-1

This is possibility I
classifyParityI(input) = classifyExplicitDigit(input) % 2
predictions = [classifyParityI(testData[k,:]) for k in 1:nTest]
accuracyI = sum(predictions .== testParity)/nTest
println("Accuracy with method I:", accuracyI)

This is possibility II
yDatParity = tfPM.((trainLabels .% 2) .== 1)
beta = Adag*yDatParity
classifyParityII(input) = [1 ; input]'*beta > 0 ? 1 : 0
predictions = [classifyParityII(testData[k,:]) for k in 1:nTest]
accuracyII = sum(predictions .== testParity)/nTest
println("Accuracy with method II:", accuracyII)

As can be seen, method I obtains 92.83% accuracy while method II (directly training on images labeled as
"odd" or "even" obtains 89.4% accuracy. Hence it appears that method I is superior.

Accuracy with method I:0.9283
Accuracy with method II:0.894

