Solution to Assignment 3

MATH7502 2019, Semester 2
Assignment 3 questions (https://courses.smp.uq.edu.au/MATH7502/2019/ass3.pdf)

Solution to Question 1

(a) The weighted least squares problem can be writen as trying to approximatly solve the equations $A x=b$ where each row (each i 'th equation) is scaled by a strictly postive w_{i}. This can be written as minimization of

$$
\|D A x-D b\|^{2}=\|D(A x-b)\|^{2}
$$

where D is an $m \times m$ diagonal matrix with diagonal elements $\sqrt{w_{1}}, \ldots, \sqrt{w_{m}}$. Thus it is a the standard least squares problem minimizing $\|B x-d\|^{2}$ where $B=D A$ and $d=D b$.
(b) Take an \tilde{x} with $D A \tilde{x}=0$ (we aim to show that \tilde{x} must be the $0 n$-vector). Since D is square and non-singular we can multiply both sides by D^{-1} to get, $A \tilde{x}=0$. However, by assumption A has linearly independent collumns then the only solution to $A x=0$ is $x=0$. This means that $\tilde{x}=0$. Hence the only element in the nullspace of $D A$ is 0 and hence $D A$ has linearly independent collumns.
(c) Using B and d we have

$$
\hat{x}=\left(B^{T} B\right)^{-1} B^{T} d=\left(A^{T} D^{T} D A\right)^{-1} A^{T} D^{T} D b=\left(A^{T} W A\right)^{-1} A^{T} W b,
$$

where $W=D^{T} D=D^{2}$ is the diagonal matrix of weights.

Solution to Question 2

(a) We know that the \hat{x} that solves the normal equations $A^{T} A x=A^{T} b$, is given by

$$
\hat{x}=A^{\dagger} b=R^{-1} Q^{T} b
$$

Now $A \hat{x}$ is the "predicated" value, closest to b within the collumn space of A. Using $A=Q R$ it is given by,

$$
A \hat{x}=Q R R^{-1} Q^{T} b=Q Q^{T} b
$$

(b) Using the above and $\|u-v\|^{2}=u^{T} u-2 u^{T} v+v^{T} v$, we have,

$$
\|A \hat{x}-b\|^{2}=\left\|Q Q^{T} b-b\right\|^{2}=\left(Q Q^{T} b-b\right)^{T}\left(Q Q^{T} b-b\right)=\left(Q Q^{T} b\right)^{T} Q Q^{T} b-2 b^{T} Q Q^{T} b+b^{T} b .
$$

This equals:

$$
b^{T} Q Q^{T} Q Q^{T} b-2\left(Q^{T} b\right)^{T} Q^{T} b+\|b\|^{2}
$$

and using $Q^{T} Q=I$ we have,

$$
b^{T} Q Q^{T} b-2\left(Q^{T} b\right)^{T} Q^{T} b+\|b\|^{2}=\left(Q^{T} b\right)^{T} Q^{T} b-2\left(Q^{T} b\right)^{T} Q^{T} b+\|b\|^{2}=-\left\|Q^{T} b\right\|^{2}+\|b\|^{2}
$$

as desired.

Solution to Question 3

For $x=\left(x_{1}, x_{2}\right)$, we aim to fit: $\hat{f}(x)=a+b_{1} x_{1}+b_{2} x_{2}+c_{1} x_{1}^{2}+c_{2} x_{2}^{2}+c_{3} x_{1} x_{2}$
(a) We have $f^{(1)}(x), \ldots, f^{(6)}(x)$ as follows:

$$
\begin{aligned}
f^{(1)}(x) & =1 \\
f^{(2)}(x) & =x_{1} \\
f^{(3)}(x) & =x_{2} \\
f^{(4)}(x) & =x_{1}^{2} \\
f^{(5)}(x) & =x_{2}^{2} \\
f^{(6)}(x) & =x_{1} x_{2}
\end{aligned}
$$

Now the i 'th row of the $n \times 6$ design matrix A has the form

$$
\left[f^{(1)}(x) f^{(2)}(x) f^{(3)}(x) f^{(4)}(x) f^{(5)}(x) f^{(6)}(x)\right]
$$

where x is the i 'th data point.
Further,

$$
\beta=\left[\begin{array}{llllll}
a & b_{1} & b_{2} & c_{1} & c_{2} & c_{3}
\end{array}\right]^{T}
$$

Then given data x and y we wish to minimize,

$$
\|A \beta-y\|^{2}
$$

(b)

In [1]:

```
f1(x) = 1
f2(x) = x[1]
f3(x) = x[2]
f4(x) = x[1]^2
f5(x) = x[2]^2
f6(x) = x[1]*x[2]
fs = [f1,f2,f3,f4,f5,f6] #an array of functions
f(x,j) = fs[j](x)
```

Out[1]: f (generic function with 1 method)

In [2]:

```
using LinearAlgebra
x1Grid = -5:0.1:5
x2Grid = -5:0.1:5
n = length(x1Grid)*length(x2Grid)
xvals = [[x1,x2] for x1 in x1Grid, x2 in x2Grid];
xflat = reshape(xvals,n)
A = [f(x,j) for x in xflat, j in 1:6];
AA = [8 3; 3 11]; d = [1,1];
yOfx(x) = (x-d)'*AA*(x-d) + 30\operatorname{cos(10x[1])* cos(10x[2])}
y = yOfx.(xflat);
betaHat = pinv(A)*y
println("Estimates of (a,b1,b2,c1,c2,c3): ", betaHat)
Estimates of (a,b1,b2,c1,c2,c3): [24.9965, -22.0, -28.0, 8.00025, 11.0
002, 6.0]
```

(c) Observe that A is symmetric and consider $(x-d)^{T} A(x-d)$. Expanding it equals,

$$
x^{T} A x-2 x^{T} A d+d^{T} A d
$$

Now treating the entries of A and d in the standard manner ($a_{11}, a_{12}, a_{22}, d_{1}, d_{2}$) this equals, $a_{11} x_{1}^{2}+2 a_{12} x_{1} x_{2}+a_{22} x_{2}^{2}-2\left(a_{11} d_{1}+a_{12} d_{2}\right) x_{1}-2\left(a_{12} d_{1}+a_{22} d_{2}\right) x_{2}+d_{1}\left(a_{11} d_{1}+a_{12} d_{2}\right)+d_{2}\left(a_{12} d_{1}+\right.$

These coefficients may now be equated with the estimated a, b and c values. For simplificty let's round the estimated values: to $(25,-22,-28,8,11,6)$. This also kills the 'noise' from $30 \cos (10 x[1]) * \cos (10 x[2])$.

We now have:

$$
\begin{gathered}
a_{11}=c_{1}=8 . \\
a_{22}=c_{2}=11 . \\
2 a_{12}=c_{3}=6 \Rightarrow a_{12}=3 .
\end{gathered}
$$

Hence we see the matrix A is exactly reconstructed (this works because it is symmetric).
Further:

$$
-2\left(a_{11} d_{1}+a_{12} d_{2}\right)=b_{1}=-22 \quad \Rightarrow \quad 8 d_{1}+3 d_{2}=11
$$

Similarly,

$$
-2\left(a_{12} d_{1}+a_{22} d_{2}\right)=b_{2}=-28 \quad \Rightarrow \quad 3 d_{1}+11 d_{2}=14
$$

Solving these linear equations for d_{1} and d_{2} we get $d_{1}=1$ and $d_{2}=1$.
Hence we see that by removing the noise we are exactly able to reconstruct the matrix A and vector d !

Solution to Question 4

We first experiment numerically to determine the eigenvalues and then show analytically that these hold.

In [3]:	using LinearAlgebra eigvals(ones(1,1))
Out [3]:	```1-element Array{Float64,1}: 1.0```
In [4]:	eigvals(ones (2, 2))
Out[4]:	```2-element Array{Float64,1}: 0.0 2.0```
In [5]:	eigvals(ones (3,3))
Out[5]:	$\begin{aligned} & \text { 3-element Array\{Float64, 1\}: } \\ & -5.624168597199657 e-16 \\ & 7.305347407387203 e-18 \\ & 2.9999999999999996 \end{aligned}$

```
In [6]: eigvals(ones(4,4))
Out[6]: 4-element Array{Float64,1}:
    -5.660001591138239e-16
    -1.2325951644078312e-32
        1.0888646801245488e-17
        3.999999999999999
```

In [7]: eigvecs(ones (4, 4))
Out [7]: 4×4 Array\{Float64, 2$\}$:
$\begin{array}{llll}-0.408248 & 0.707107 & -0.288675 & -0.5\end{array}$
$-0.408248-0.707107 \quad-0.288675-0.5$
$0.816497-8.75605 e-17 \quad-0.288675-0.5$
$0.0 \quad 0.0 \quad 0.866025-0.5$

Hence we believe:

Set $A=\mathbf{1 1}^{T}$ an $n \times n$ matrix of all 1 's. Then the eigenvalues are $n, 0,0, \ldots, 0$. The fact that $n-1$ of the eigenvalues are 0 is not surprising. This is because the rank of the matrix is 1 and hence the rank of the nullspace is $n-1$. This means that to get,

$$
A x=0 x=0
$$

we can take $x \neq 0$ as any of the vectors from an $n-1$ dimensional sub-space which is the null-space.
Now for the eigenvalue equalling n we can guess than an eigenvector is $\mathbf{1}$. Observe:

$$
\mathbf{1 1}^{T} \mathbf{1}=n \mathbf{1}
$$

Hence n is an eigenvalue.
Note that an alternative way to solve this problem is to directly consider $\operatorname{det}\left(\mathbf{1 1}^{T}-\lambda I\right)$. Using determinant operations it can be shown to be,

$$
\lambda^{n-1}(n-\lambda)
$$

Here is a crude computational check:

In [8]:

```
characteristicPolynomiall(\lambda,n) = det(ones(n,n) - \lambda*I)
characteristicPolynomial2(\lambda,n) = \lambda^(n-1)*(n-\lambda)
n = 5
lamGrid = -2n:0.1:2n
maximum(abs.(characteristicPolynomial1.(lamGrid,n) .- characteristicPoly
nomial2.(lamGrid,n)))
```

Out [8]: $2.9103830456733704 \mathrm{e}-11$

Solution to Question 5

By trying out several attempts it appears that the mean spectral radius is $n / 2$. That is:
Conjecture: Take an $n \times n$ matrix with entries that are i.i.d. uniform $(0,1)$ values. Denote the eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$. And denote

$$
\sigma=\max _{i=1, \ldots, n}\left|\lambda_{i}\right| .
$$

The $E[\sigma]=n / 2$.

In [9]: using Random, LinearAlgebra, Plots, Statistics
pyplot()
Random.seed! (0)
$\mathrm{N}=10^{\wedge} 4$
nRange $=1: 20$
eigR(n) = maximum(abs.(eigvals(rand(n,n))))
meanEst(n) $=$ mean([eigR(n) for _in 1:N])
ests $=$ [meanEst(n$)$ for n in nRange]
conj(n) $=n / 2$
scatter(nRange, [ests, conj.(nRange)],legend = false, xlabel = "n", ylabel = "spectral radius")

Solution to Question 6
(a) To compute the eigenvalues consider the characteristic polynomial and equate to 0 (this should hold for every \$ltheta):

$$
(\cos \theta-\lambda)^{2}+\sin ^{2} \theta=0
$$

or,

$$
\cos ^{2} \theta-2 \lambda \cos \theta+\lambda^{2}+\sin ^{2} \theta=0
$$

or

$$
\lambda^{2}-2(\cos \theta) \lambda+1=0
$$

Hence,
$\lambda_{1,2}=\cos \theta \pm \frac{1}{2} \sqrt{4 \cos ^{2} \theta-4}=\cos \theta \pm \sqrt{\cos ^{2} \theta-1}=\cos \theta \pm \sqrt{-\sin ^{2} \theta}=\cos \theta \pm i|\sin \theta|=\cos \theta \pm$
Remember $e^{i \theta}=\cos \theta+i \sin \theta$.
Let A_{θ} be the rotation matrix. To find eigenvectors consider:

$$
A_{\theta} x=e^{i \theta} x
$$

Set the second coordinate of x to be 1 hence the first equation from the above reads:

$$
(\cos \theta) x_{1}-\sin \theta=(\cos \theta) x_{1}+i(\sin \theta) x_{1}
$$

Hence $x_{1}=-1 / i=i /(-i i)=i$. Thus an eigenvector corresponding to $e^{i \theta}$ is $x=[i, 1]^{T}$ and thus a normalized one is $(1 / \sqrt{2})[i, 1]^{T}$.

Similarly, a noramlized eigenvector corresponding to $e^{-i \theta}$ is $(1 / \sqrt{2})[1, i]^{T}$.

Here is a test...

In [10]: $A(\theta)=[\cos (\theta)-\sin (\theta) ; \sin (\theta) \cos (\theta)]$
$\theta=$ pi/6
eigvals(A(θ))
cannot define function A; it already has a value

```
Stacktrace:
```

[1] top-level scope at In[10]:1

In [11]: $\exp (i m * \theta), \exp (-i m * \theta)$
UndefVarError: θ not defined
Stacktrace:
[1] top-level scope at In[11]:1

```
In [12]:
```

$\mathrm{x} 1=[\mathrm{im}, 1] / \mathrm{sqrt}(2)$;
$A(\theta) * x 1-\exp (i m * \theta) * x 1$

UndefVarError: θ not defined

Stacktrace:

[1] top-level scope at In[12]:2

In [13]: $x 2=[1, i m] / s q r t(2) ;$ $A(\theta) * x 2-\exp (-i m * \theta) * x 2$

UndefVarError: θ not defined

Stacktrace:
[1] top-level scope at $\operatorname{In}[13]: 2$
(b) Trace $=2 \cos \theta$. Sum of eigenvalues $=\cos \theta+i \sin \theta+\cos \theta-i \sin \theta=2 \cos \theta$.
(c) Det $=\cos ^{2} \theta+\sin ^{2} \theta=1$. Product of eigenvalues $=e^{i \theta} e^{-i \theta}=e^{0}=1$.

Solution to Question 7

Looking at $A B$ and $B A$ we have,

$$
\begin{aligned}
& A B=\left(X \Lambda_{1} X^{-1}\right)\left(X \Lambda_{2} X^{-1}\right)=X \Lambda_{1} \Lambda_{2} X^{-1} \\
& B A=\left(X \Lambda_{2} X^{-1}\right)\left(X \Lambda_{1} X^{-1}\right)=X \Lambda_{2} \Lambda_{1} X^{-1}
\end{aligned}
$$

Hower $\Lambda_{1} \Lambda_{2}=\Lambda_{2} \Lambda_{1}$ because these matrices are diagonal. Hence $A B=B A$.

Solution to Question 8

(a) The rank of A is 1 with

$$
A=\left[\begin{array}{l}
2 \\
1
\end{array}\right]\left[\begin{array}{ll}
1 & 2
\end{array}\right]
$$

Now look at

$$
W=A^{T} A=\left[\begin{array}{cc}
5 & 10 \\
10 & 20
\end{array}\right]
$$

The characteristic polynomial of W is $(5-\lambda)(20-\lambda)-100=\lambda^{2}-25 \lambda=\lambda(\lambda-25)$.
Hence eigenvalues are $\lambda=0$ and $\lambda=25$. Hence the singular value is $\sigma_{1}=\sqrt{25}=5$.
We can now guess that the SVD has to be of the form,

$$
A=U \times 5 \times V^{T}
$$

and hence given the structure of A we can set $U=\left[\begin{array}{ll}2 / \sqrt{5} & 1 / \sqrt{5}\end{array}\right]^{T}$ and $\mathrm{V}=U=\left[\begin{array}{ll}1 / \sqrt{5} & 2 / \sqrt{5}\end{array}\right]^{T}$ which happen to be normed vectors.

Here is a sanity check with Julia:

In [14]: using LinearAlgebra
$A=[24 ; 12]$
$\mathrm{F}=\operatorname{svd}(\mathrm{A})$
println("Singular value: ", F.S[1])
\#it turns out that svd() in Julia chooses the negative of it
println("U:",F.U[:,1]," or ", [2/sqrt(5),1/sqrt(5)])
println("V:",F.U[:,1]," or ", [1/sqrt(5),2/sqrt(5)])

```
Singular value: 5.000000000000001
U:[-0.894427, -0.447214] or [0.894427, 0.447214]
V:[-0.894427, -0.447214] or [0.447214, 0.894427]
```

(b) To explore, let's take a different approach for the rank 1 matrix B. We know the sum of the eigenvalues of $B^{T} B$ is its trace. The $(1,1)$ element of $B^{T} B$ is $2 \times 2+8 \times 8=68$. The $(2,2)$ element is $(-1) \times(-1)+(-4) \times(-4)=17$. Hence the trace is $68+17=85$. Now since the matrix $B^{T} B$ is of rank 1 one of the eigenvalues is 0 and the other must be 85 . Hence the singular value is $\sqrt{85} \approx 9.21954$.

Here is a sanity check:

```
In [15]: B = [2 -1; 8 -4];
    svdvals(B)
Out[15]: 2-element Array{Float64,1}:
    9.219544457292887
    7.944109290391273e-16
```

Now we compute matching normalized eigenvectors for $B^{T} B$ to get

$$
V=\frac{1}{\sqrt{5}}\left[\begin{array}{cc}
-2 & 1 \\
1 & 2
\end{array}\right]
$$

Now look at $B B^{T}$ and get matching eigenvectors:

$$
U=\frac{1}{\sqrt{17}}\left[\begin{array}{cc}
-1 & -4 \\
-4 & 1
\end{array}\right]
$$

In [16]: B
Out [16]: 2×2 Array\{Int64, 2$\}$:
2-1
$8-4$

```
In [17]: V = [-2 1 ;1 2]/sqre(5);
    U = [-1 -4; -4 1]/sqrt(17);
    \Sigma = [sqrt(85) 0 ; 0 0];
    U*\Sigma**'
```

Out [17]: 2×2 Array\{Float64, 2$\}$:
$2.0-1.0$
$8.0-4.0$
(c) The explicit computation of SVD for $A+B$ is messy.

In [18]:	$A+B$
Out [18]:	$\begin{array}{cl} 2 \times 2 & \text { Array }\{\operatorname{Int} 64,2\}: \\ 4 & 3 \\ 9 & -2 \end{array}$
In [19]:	$\begin{aligned} & F=\operatorname{svd}(A+B) \\ & F \cdot U \end{aligned}$
Out [19]:	$\begin{array}{cc} 2 \times 2 \text { Array }\{\text { Float } 64,2\}: \\ -0.382683 & -0.92388 \\ -0.92388 & 0.382683 \end{array}$
In [20]:	Diagonal (F.S)
Out [20]:	```2\times2 Diagonal{Float64,Array{Float64,1}}: 9.87048 3.54593```
In [21]:	F.V
Out[21]:	$\begin{array}{cl} 2 \times 2 \text { Adjoint }\{\text { Float } 64, \text { Array }\{\text { Float } 64,2\}\}: \\ -0.997484 & -0.070889 \\ 0.070889 & -0.997484 \end{array}$

```
In [22]: F.U*Diagonal(F.S)*F.V'
Out[22]: 2\times2 Array{Float64,2}:
    4.0 3.0
    9.0 -2.0
```


Solution to Question 9

(a) Since A is non-singular we have that $\Sigma=A A^{T}$ is non-singular. Hence Σ^{-1} exists and $|\Sigma| \neq 0$.
(b) The derivation is based on the explicit inverse of Σ (sometimes called the precision matrix). Note that $|\Sigma|=\sigma_{1}^{2} \sigma_{2}^{2}(1-\rho)$ and, $\$ \$$

\Sigma^\{-1\}

\frac\{1\}
sigma_1^2\sigma_2^2(1-\rho) \} \left[

$$
\begin{array}{cc}
\sigma_{2}^{2} & -\sigma_{1} \sigma_{2} \rho \\
-\sigma_{1} \sigma_{2} \rho & \sigma_{1}^{2}
\end{array}
$$

\right]. \$\$
After some manipulation the standard expression can be obtained:

$$
f(x, y)=\frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} \times \exp \left\{\frac{-1}{2\left(1-\rho^{2}\right)}\left[\frac{\left(x-\mu_{1}\right)^{2}}{\sigma_{1}^{2}}-\frac{2 \rho\left(x-\mu_{1}\right)\left(y-\mu_{2}\right)}{\sigma_{1} \sigma_{2}}+\frac{\left(y-\mu_{2}\right)^{2}}{\sigma_{2}^{2}}\right]\right\}
$$

(c) Here are plots:

```
using Plots, LinearAlgebra
pyplot()
\mu1, \mu2 = 1, 1
\sigma1,\sigma2 = 1.3, 0.8
@ = 0.7
#direct implementation
fa(x) = (2\pi*\sigma1*\sigma2*sqrt(1-@^2 ) )^-1 *
    exp(-(2*(1-\mp@subsup{\varrho}{}{\wedge}2))^-1 * ((x[1]-\mu1)^2/\sigma1^2 - 2\varrho*(x[1]-\mu1)*(x[2]-\mu2)/(\sigma1*
\sigma2) + (x[2]-\mu2)^2/\sigma\mp@subsup{2}{}{\wedge}2))
\mu = [ \mu1, \mu2 ]
\Sigma=[\sigma1^2 @*\sigma1*\sigma2;
    @*\sigma1*\sigma2 \sigma2^2]
fb(x) = (2\pi)^-1 * det(\Sigma)^-0.5 * exp(-0.5*(x-\mu)'*inv(\Sigma)*(x-\mu))
println("Sanity check that both functions fa() and fb() are the same:")
println(fa([0,0]),"\t",fb([0,0]))
println(fa([1,0]),"\t",fb([1,0]))
xGrid = -2:0.1:4
yGrid = -1:0.1:3
p1 = surface(xGrid,yGrid,(x1,x2)->fa([x1,x2]),
    legend=false,xlabel="x", ylabel="y",camera=(-30,35),size=(50
0,400))
p2 = contour(xGrid,yGrid,(x1,x2)->fa([x1,x2]),
        legend=false,xlabel="x", ylabel="y",size=(500,400))
plot(p1,p2,size=(1200,400))
```

Sanity check that both functions fa() and fb() are the same:
0.097038907018605320 .0970389070186053

$$
0.04631505318110716 \quad 0.04631505318110719
$$

Out [23]:

(d) Calculating/estimating $P(X<0, Y<0)$:

```
In [24]:
\#Using a crude Riemann sum:
\(\delta=0.001\)
M = 5 \#approximates infinity
grid \(=-\mathrm{M}: \delta: 0\)
sum([fa([x,y])* \(\delta^{\wedge} 2\) for \(x\) in grid, \(y\) in grid ])
Out[24]: 0.07555712725292603
In [25]: \#Using Monte-Carlo:
using Distributions
\(\mathrm{N}=10^{\wedge} 7\)
length (filter ( \((x)->(x[1]<0 \& \& x[2]<0)\), [rand(MvNormal( \(\mu, \Sigma)\) ) for in \(1: N\)
]) )/N
Out[25]: 0.0754657
```


Solution to Question 10

The code below is a modification of the code in lecture 1 (also appearing in the [SWJ] book). Note the use of the modulo (\%) operator for obtaining the parity of an integer (0 for even and 1 for odd).

In [26]:

```
using Flux.Data.MNIST, LinearAlgebra
using Flux: onehotbatch
imgs = MNIST.images()
labels = MNIST.labels()
nTrain = length(imgs)
trainData = vcat([hcat(float.(imgs[i])...) for i in 1:nTrain]...)
trainLabels = labels[1:nTrain]
testImgs = MNIST.images(:test)
testLabels = MNIST.labels(:test)
testParity = testLabels .% 2 #has 0 for even and 1 for odd
nTest = length(testImgs)
testData = vcat([hcat(float.(testImgs[i])...) for i in 1:nTest]...)
A = [ones(nTrain) trainData]
Adag = pinv(A)
tfPM(x) = x ? +1 : -1
yDatExplicit(k) = tfPM.(onehotbatch(trainLabels,0:9)'[:,k+1])
bets = [Adag*yDatExplicit(k) for k in 0:9]
classifyExplicitDigit(input) = findmax([([1 ; input])'*bets[k] for k in
1:10])[2]-1
#### This is possibility I
classifyParityI(input) = classifyExplicitDigit(input) % 2
predictions = [classifyParityI(testData[k,:]) for k in 1:nTest]
accuracyI = sum(predictions .== testParity)/nTest
println("Accuracy with method I:", accuracyI)
#### This is possibility II
yDatParity = tfPM.((trainLabels .% 2) .== 1 )
beta = Adag*yDatParity
classifyParityII(input) = [1 ; input]'*beta > 0 ? 1 : 0
predictions = [classifyParityII(testData[k,:]) for k in 1:nTest]
accuracyII = sum(predictions .== testParity)/nTest
println("Accuracy with method II:", accuracyII)
```

Accuracy with method I:0.9283
Accuracy with method II:0.894

As can be seen, method I obtains 92.83% accuracy while method II (directly training on images labeled as "odd" or "even" obtains 89.4% accuracy. Hence it appears that method I is superior.

