Topic 3: Signal Processing (Groups 4 and 6)	
Positive Feedback:	Room for Improvement:
### Group 4	### Group 4
 convolution and discrete fourier transforms sections were 	Focus more time on a few topics rather than trying to sample
strong with good examples and visuals	them all; for example: more detail in convolution and fourier transforms, and only briefly mentioning faster fourier
### Group 6	transforms. A diagram or two would have been a good addition to the summary as well.
- Examples were very good, particularly the audio signal	
examples	Add more plots and visuals to the video, particularly in the
 Figure 3 is a very effective visual on describing edge detection 	second half of the video.
	### Group 6
Really solid video and summary.	
	Not much to say really.
While Group 4's approach is simplistic compared to the	Suggestions for Group 4 to improve is to try and customise
Group 6's 45 pages of content, both teams were about to	their own examples in order to apply a level of creativity and
explain their approach clearly. Group 4 focuses their bulk of	originality in the assignment. If existing code is used, reference
the presentation showing their results of Fast Fourier	where the code comes from and try to build on that (e.g. build
Transforms is same as a calculating DFTs. For Group 6's	your own functions to extend the pre-existing code). For
case, they were able to demonstrate their code against their	Group 6, the suggestion is to tie in the certain keywords from
own examples before resorting to using existing Julia packages	the summary to the video presentation. From the summary,
to finish their project. I find it to be quite amazing that the	topics such as Vandermonde matrices were mentioned, which
team could reduce their content down to a one-pager. It	resembled a similar matrix for Group 6's video at 1:14.
appears in the Julia notebook and from their video that they	Other than this, both the video and summary for Group 6
were sufficiently prepared with their amount of material to	contained great information for readers to understand the
clearly demonstrate their expertise and understanding for this project topic. Well done team!	context and meaning behind Fourier Transformations and Convolution algorithms applied on audio and image data.
	convolution algorithms applied on additio and image data.

The topic 3 includes group 4 and group 6. The project of group 4 illustrated a lot about basic mathematical theorem behind signal processing, including convolution, Fourier transform, and shift as well as circulant matrices, which are clearly logical and explicit. Personally, this is a perfect educational illustration of these mathematics, and is also understandable for learners. The project of gourd 6 attracts me for they illustrated vividly the project via exemplifying audio signal processing and feature extraction.	The project of group 4 can be improved via a closer combination of mathematical theorem and practical application of signal processing. For both the video and summary did not explicitly explain signal processing. Therefore, group 4 could do better if they can apply an example to describe how signal processing achieves. Actually, group 6 accomplished the project perfectly. But it would be better if group 6 can expand some basic explanations of mathematical theorem as explicit as group 4 did.
 I like the introduction of Fourier Transforms in Group 4 It shows the process of Fourier Transforms, very clear, including how to inverse, how to transform Omega matrix and how do matrixes influence photo. It's very interesting. I like the voice and picture processing in Group 6 It shows the how they though change matrix to get more different voice, respectively frequency domain and time domain. 	Both group did a good work. But they can do further effort. In Group 4, I think they can explain on how DFT and two types of matrix influence the picture. They just told us they have link, but not explain why. In Group 6, I think they can explain more in part of 2d picture, and do more practical experiments in this part.
Group 4 explains the code cleanly and step by step. Group 6 provides soundtrack evidence which is easier to understand.	Group 4 can add more information about the Terminology. Group 6 can remove background music so that the audience can focus on their excellent presentation.
Group 4: The presentation and summary report contain information in proper order and quite simple, hence it is easy to understand the concepts. Group 6: The presentation is quite notable and expressive, also covers different range of examples like two use cases are considered in case of convolution theory. The summary is very well summaries & covers the topics with relevant examples.	Group 4: Theory would have made more sense if explained with examples. Besides, shift matrix and circulant matrix theory could have been explained further. Group 6: Overall the presentation and summary report is quite impressive, however, There is no proper mentioning about shift matrices and circulant matrices.

The content of the video and summary in Group 4 is	For group 4, it might be better to use more realistic examples
completed. They not only give the convolution and Fourier	to introduce the topic.
transform a basic introduction but also explain shift matrices	As for group 6, it would be clearer to add some markdown for
and circulant matrices clearly.	the code they write.
Group 6 produced the video very well. They not only add the	
background music but also put a certain audio record when	
they explained Fourier transform, which made them attractive	
and understandable.	
Group 4: In their project, they present how to use the	Group 4: They mentioned "X space†and "frequency
convolution of two vectors to smooth time series, and the	space†many times in their video, but there is on any
process of smoothing the picture by using the convolution of	introduction or explanation of these two things. It is good for
two matrices. This could give a More intuitively feeling of the	them to show the practical application in their
application of signal processing.	jupternotebook, if they could add this part to the summary,
Group 6: From their summary, I know the basic process of how	that would be nice.
Fourier Transform used to enhance images. (They give a flow	Group 6: I think they did a great job.
chart of the process.) Apart from this they also give examples	
of applications of Fourier Transform in their summary. I have	
to admit that their video is awesome! The beginning of it is	
really eye-catching that compared to other groups (of course,	
it is much better than the video of my group).	
Group 4: In this video it has three parts which introduced	Group 4: It's hard to explain so many codes in a short time,
some methods to calculate the convolution of vectors and	so maybe they could introduce more applications with more
matrices. The speaker visualized her code by the examples of	graphics in their notebook and show some pictures in their
ECG signals and image blurring to show the applications of the	summary. Also, this video will be better if it's a full-screen
convolution on signals. We can also use an inverse method to	recording.
decrypt those transformed signals, which reminds me of	Group 6: Introducing so many applications is really attractive
extracting the zipped files. From the summary, there are full of	to a beginner. But from the summary there should be more
equations and identifications, which makes me feel scared at	equations and have a better text typesetting in order to let the
the first glance. But I have a further understand about why	reader easily find their highlight point.
this method can be fast from the equation. So indeed, the	
learner still needs the equations.	
Group 6: In this video it shows how to use DFT to clean the	
sound signal without noise and how to detect the edge,	
sharpening or embossing a jellyfish image, which are pretty	
attractive. They also introduced the DFT method and a Julia	
inbuilt convolution function and taught me a lot about how	
does this works by some real examples. Less equations, much	
attractions, which highly raised my interest in signal	
processing. In their summary they provided detailed	
information in Fourier Transforms and convolution. The	
pictures clearly show the process in the frequency domain	
filtering operation and how does the convolutions be applied	
to vectors and matrices.	

As for the group 4, i think their video is really well, their video even has the subtitle to help us understand. And their summary cover the three points of this topic which i think is fair enough. As for the group 6, they made an amazing video. But i think maybe they lost the the part of shift matrices and circulant matrix. For the first group(Group 4), I like their starting point of talking about vector convolution and then move on to more complex conditions. This really helped us who never learned the content to catch up with the topic. For the second group(Group 6), I like their well and clearly recorded vadio and well structured Markdown contents, and the really clear examples included in the project.	For group 4, i think their work is Impeccable. Maybe they should add some comments for their code. Make them more readable. And for group6, they have a great video, so i think the only thing they should do is add the lost part. Also some comments for the codes is better. Group 4: More convolutional contents like edge detecting or pooling could be included as well for these are all typical use to convolution. Group 6: Very good presentation. So if I have to say some improvement, I think you could explain some basic theories or some content to show how real convolution works.
 G4: Content coverage is complete and clear. I've learned a lot from the video not only about the code but also about the theoretical knowledge at the same time. G6: Process flow is clear and specific, easy to follow as well. Use step-by-step code demonstrations to help the viewer understand this topic. The logic is clear and easy to understand. 	 G4: It will be great if add the code to carry out convolution of an image signals. G6: The summary doesn't cover "Shift Matrices and Circulant Matrices†part content. Adding more formulations also can help us to understand this topic.
Group 4's presentation was a good technical introduction to the complexities of implementing these DSP concepts with Linear algebra. The video was well paced and covered the topics well. It piqued my interest in the subject Group 6's Summary was very readable and the video introduction was very professional. The rest of the video was also well timed and with good overview demonstrations of the concepts. The audio waveform before and after fourier tranformations and the plot of the frequency magnitudes in the middle was particularly illustrative of the fourier transformation approach. I liked that, although the mathematics was present in the notebook, it did not overwhelm the presentation.	Group 4's PDF summary did not seem as clear as the video and the notebook. Some of the English distracted from the demonstration of the mathematical concepts. I cannot think of any way that Group6's Summary and Video presentation could be improved, without exceeding the allotted 6 minutes. Some of these DSP concepts deserve more time than this.
Group 4 gives a fairly in-depth explanation of the linear algebra aspect in signal processing. This team starts the video by explaining the theory and then continues with an example, which is a helpful approach. A cursor used for highlight and the subtitles added on the video helps me understand the flow. I think Group 6 has used all the tools needed to make an exciting video. The mathematical explanation also starts with things familiar to the general public, for example, regarding audio filtering and image enhancement â€" this approach suitable for me with an engineering background. Colour pointer helps the viewer to follow the explanation steps easily.	With a proper explanation per section, what can be improved from Group 4 is how to convey the relationship all of the sections to the viewer. Thus, the viewer can receive one complete information about signal processing. And for Group 6, so far I have not found something that needs to be improved from the video.

Group6: Summary is clear enough to understand the basal	Group4 : Use more words to explain the main idea of this
idea of signal processing. Nice video and clear explanation.	formulas.
Give enough examples of using it. Really like the example that	Group6 : Give audience more time to see and understand
they add noises then clear the noise to show how the method	what the code is and more explanation about how the code
works.	works.
Group4: They provide subtitle for the video and code is easy	
to understand. Focus more about the formulas.	
I found it the code by group 6 to be interesting and very	While group 6 was very comprehensive with their codes and
applicable with the example of audio filtering and image	summary, I found that the summary could give some more
classification. Their narrative to the topic are very well	explanation on what Fourier transform does in concept, in
structured and engaging with the graphs and audio to	addition to the mathematical operations. It is also somewhat
demonstrate the examples. It also helps that the narrator	disjoint between the summary and the code, assuming they
follows the code closely and describes in details what happen	should compliment one another, as they seem to be following
in each step. Very well done and educational code!	separate narratives.
As for group 9, I found that their examples for discrete Fourier	In comparison to that, group 4's summary is somewhat
transform with the plot is quite interesting in term of	lacking in technical explanation. Their code follows the
describing the transformation. Their image processing	concepts quite closely in terms of what is in the summary, but
example within the codes for smoothing using convolution is	lacking of explanation of what they were trying to achieve
also very well done. The summary is succinct and easy to	with their program.
understand without having much background on the topic.	
Also very nice of them to include subtitles for the audience.	
The speaker in the video of group 4 speak clearly, and the	In the video of the group 4, they can put the key idea in
code are well designed and organized. And there are plots	notebook.
which let people easier to understand. The summary looks	In the video of the group 6, they could modify their notebook
good and there are some highlights to let readers know what	into the same format. And summary can be more richful.
they are introduce.	
The video of group 6 use sound in the examples which is	
good for understanding. The summary looks professional and	
well organized.	

Group 4 This group tries to illustrate the use of convolution with interesting examples i.e. time series smoothing of ECG signal and 2D image blurring. The video and summary are well set out and structured according to clear topics. Group 6 The video and summary from Group 6 includes great explanations of concepts which include the mathematical theory as well as real world applications. They have used different kinds of signals to illustrate processing techniques i.e. sound and image, which aides in understanding further applications. They have included useful diagrams where appropriate to concisely illustrate topics but also included extensive explanations that cover the topics in great depth. Overall, material was set out very well with appropriate focus on key concepts.	Group 4 Several concepts were explained in mathematical theory but was not well connected to their application. This meant that some examples were difficult to follow because the justification for each step was not given before continuing. Generally, I think they dove into technical applications too quickly before establishing the core fundamentals. Group 6 Overall very well put together but does expect substantial knowledge of underlying concepts. A few additional reminders/explanations of assumed knowledge could have made the more advanced topics clearer.
Group 4: They start with the basic convolution concept, talked about the vector convolution, and gave an example about the vector convolution applied to time series smoothing; next, introduced the 2-D convolution, which can be applied in image blurring. The concept and application of convolution are apparent, easy to understand. As for DFT, The example they provided I think is not very clearly, Group6 First, they talked about the Fourier Transforms, gave an example about the DFT applications. They give a 440 Hz voice, and put some noise in the sound, they used DFT to extract the original signal interfered by noise, this shows that the DFT can handle interfered signals. For convolution, They only talked about the convolution in 2D image signals, such as image blurring.	The group 6 seems didn't talk about Shift Matrices and Circulant Matrices. For convolution, actually there are many applications of convolution, such as Audio filtering, communication channel, but in this video, they only talk about the image blurring, I think they can provide more example to help people understand the convolution .in their summary, they can speak about vector convolution, matrix convolution. Group 4 should give a more detailed explanation of the definition of DFT, rather than only focus the formula. I think their examples of DFT are not clearly; they should give more detail, such as DFT application in signal, graph, and solve partial differential equations.

The videos of both groups were made very well.	For group 4, in the summary part, the formula is simply listed, but the practical application scope of each part is not
For group 4, The video content is very clear, and the	specified, there is no explanation of the relationship between
interpretation of each code is very sufficient. Using the	these formulas and signal processing. For example, the
method of visualization, the process of image blurring is given,	relation between DFT and inverse matrix of DFT is not clear
so that we can understand the function of signal processing	
directly.	(why we need to get the inverse matrix).
	For group 6, the content of the summary part could be more
For group 6, Video content is very rich, two main methods of	comprehensive, for example the summary doesn't cover
signal processing (filtering wave and convolution to 2D	continuous Fourier transform and the topic "Shift Matrices
Images) are given. The code is very detailed, audio and images	and Circulant Matricesâ€.
are added, so that we can intuitively understand the process	
of signal processing.	
Group 4:Group 4 did a really good job with their video	Group 4: they did really well, maybe they could imply more
attaching subtitle, and their explained very clearly.	comment in their code.
Group 6:Group 6 also explain this part well and their attached	Group 6: they explained well but comparing with Group 4,
lots of codes to explained these concepts for us which made it	they introduced the Fourier Transform directly and lacked
clear for us to understand it.	parts of concepts.
	·