Please make sure to follow the hand-in instructions. Also, please present your answers in order, showing the working for each answer. Answering yes/no is not enough. You should rather present an argument or derivation of your answer.

Consider the vectors $v_{1}=\left[\begin{array}{lll}-1 & 0 & -1\end{array}\right]^{T}, v_{2}=\left[\begin{array}{lll}0 & -1 & 1\end{array}\right]^{T}$, and $v_{3}=\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]^{T}$. Let the 3×3 matrix A have columns v_{1}, v_{2}, and v_{3}. That is $A=\left[\begin{array}{lll}v_{1} & v_{2} & v_{3}\end{array}\right]$.

1. Do the vectors v_{1}, v_{2}, and v_{3} constitute a set of orthogonal vectors?
2. Are the vectors v_{2} and v_{3} orthogonal?
3. Execute the Gram-Schmidt procedure on the vectors v_{1}, v_{2}, and v_{3} in this order. Present the output as columns of an orthogonal matrix Q.
4. Determine Q^{-1}.
5. What is the nullspace of the matrix A ?
6. What is the rank of the matrix A ?
7. Are the vectors v_{1}, v_{2}, and v_{3} a basis for \mathbb{R}^{3} ?
8. Now execute the Gram-Schmidt procedure on the vectors v_{3}, v_{2}, and v_{1} in the order $(3 \rightarrow 2 \rightarrow 1)$. Present the output as the columns of an orthogonal matrix M.
9. Define the matrix $B=Q M$. Is B an orthogonal matrix?
10. Consider now the 9×9 block matrix,

$$
G=\left[\begin{array}{ccc}
Q & 0 & 0 \\
0 & M & 0 \\
0 & 0 & Q
\end{array}\right]
$$

where each 0 is a 3×3 matrix of zero values. What is the inverse matrix of G ?

