Please make sure to follow the hand-in instructions. Also, please present your answers in order, showing the working for each answer. Answering yes/no is not enough. You should rather present an argument or derivation of your answer. Tip: Do NOT waste time on excessive computations because the quiz can be solved without requiring big computations.

1. Consider the vector $u=\left[\begin{array}{ll}1 & 2\end{array}\right]^{T}$ and the vector $v=\left[\begin{array}{ll}1 & 10\end{array}\right]^{T}$. Let the matrix A be the outer product $A=u v^{T}$. Determine the eigenvalues of A.
2. Now set $u=\left[\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}\right]^{T}$ and $v=\left[\begin{array}{lllll}1 & 10 & 10^{2} & 10^{3} & 10^{4}\end{array}\right]^{T}$. With these values determine the eigenvalues of $A=u v^{T}$. Hint: Remember that the sum of the eigenvalues is the trace.
3. Let B be a 3×2 matrix with $\operatorname{rank}(B)=2$, and set the vector $c=\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]^{T}$. Assume that,

$$
B\left(B^{T} B\right)^{-1} B^{T}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 / 2 & 1 / 2 \\
0 & 1 / 2 & 1 / 2
\end{array}\right]
$$

Let x^{*} be the value of x that minimizes $\|B x-c\|$. Determine the value of $B x^{*}$ and the value of $\left\|B x^{*}-c\right\|$.
4. Continuing with the same B, prove that $B^{T} B$ is a positive definite matrix.
5. What are the 3 eigenvalues of $B\left(B^{T} B\right)^{-1} B^{T}$? Why?
6. Consider the sequence $x(0), x(1), x(2), \ldots$ of vectors in \mathbb{R}^{3} with

$$
x(k+1)=B\left(B^{T} B\right)^{-1} B^{T} x(k)-\frac{1}{2} x(k)
$$

for $k=1,2, \ldots$ Argue about the value of the limit,

$$
\lim _{k \rightarrow \infty}\|x(k)\|
$$

Does it depend on $x(0)$? Or is it the same limit for all $x(0) ?$ What is the limit?

