

This exam paper must not be removed from the venue

School of Mathematics & Physics

EXAMINATION – Illustration of Structure, Formula and Tables

Semester One Final Examinations, 2016

STAT2201 Analysis of Engineering and Scientific Data

This paper is for St Lucia Campus students.

Examination Duration: 120 minutes		For Examiner Use Only		
Reading Time:	10 minutes	Question	Mark	
Exam Conditions:		1a	-	
This is a Central Examination	1b			
This is a Closed Book Examination - no materials permitted				
During reading time - write only on the rough paper provided				
This examination paper will be released to the Library				
Materials Permitted In The Exam Venue:				
(No electronic aids are permitted e.g. laptops, phones)				
Calculators - Any calculator per	2d			
Materials To Be Supplied To Students:				
none		3b		
Instructions To Students:				
Additional exam materials (eg. answer booklets, rough paper) will be				
provided upon request.		4a		
		4b		

Total

4c 4d

Instructions

The exams consists of 4 questions, 1-4. Each question has four items, a-d.

Within each question:

Item (a) carries a weight of 8 marks.

Item (b) carries a weight of 7 marks.

Item (c) carries a weight of 6 marks.

Item (d) carries a weight of 4 marks.

The total marks in the exam are 100.

Answer ALL questions in the spaces provided. If more space is required, use the back of the PREVIOUS page.

Show all your working and include sketches where appropriate.

Work written in the Formulae and Tables section will NOT be marked.

Formulae and Tables

Summary Statistics:

Suppose $Y_1, Y_2, \dots, Y_n \sim N(\mu_Y, \sigma_Y^2)$ and $X_1, X_2, \dots, X_m \sim N(\mu_X, \sigma_X^2)$ are two independent samples. The sample means and sample variances are respectively,

$$\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i \qquad S_Y^2 = \frac{1}{n-1} \sum_{i=1}^{n} \left(Y_i - \overline{Y} \right)^2,$$
$$\overline{X} = \frac{1}{m} \sum_{i=1}^{m} X_i \qquad S_X^2 = \frac{1}{m-1} \sum_{i=1}^{m} \left(X_i - \overline{X} \right)^2.$$

Note that, $\sum_{i=1}^{n} (Y_i - \overline{Y})^2 = (\sum_{i=1}^{n} Y_i^2) - n \overline{Y}^2$.

The (two-sample) pooled sample variance is $S_P^2 = \frac{(n-1)S_Y^2 + (m-1)S_X^2}{n+m-2}$.

The ECDF function is: $F(t) = \frac{1}{n} \sum_{i=1}^{n} 1\{Y_i \le t\}$.

Sampling Distributions:

$$\frac{\overline{Y} - \mu_Y}{\sigma_Y / \sqrt{n}} \sim Z \qquad \qquad \frac{\overline{Y} - \mu_Y}{S_Y / \sqrt{n}} \sim t_{n-1} \qquad \qquad \frac{\left(\overline{Y} - \overline{X}\right) - \left(\mu_Y - \mu_X\right)}{S_P \sqrt{\frac{1}{n} + \frac{1}{m}}} \sim t_{n+m-2} \text{ if } \sigma_X = \sigma_Y.$$

Confidence Intervals for the Mean:

If σ_{Y} is known, use $(\overline{y} \pm z^{*} \sigma_{Y} / \sqrt{n})$. If σ_{Y} estimated by s_{Y} , use $(\overline{y} \pm t^{*} s_{Y} / \sqrt{n})$.

Confidence Intervals for the Difference in Means for Independent Samples:

If
$$\sigma_{Y}$$
 and σ_{X} are known, use $\left(\left(\overline{y} - \overline{x}\right) \pm z^{*} \sqrt{\frac{\sigma_{Y}^{2}}{n} + \frac{\sigma_{X}^{2}}{m}}\right)$.

If σ_{Y} and σ_{X} are unknown but assumed equal, use $\left(\left(\overline{y}-\overline{x}\right)\pm t^{*}s_{p}\sqrt{\frac{1}{n}+\frac{1}{m}}\right)$.

Hypothesis Test Basics:

Type I error: Rejection of the null hypothesis falsely (rejecting the null hypothesis when it is actually true).

Type II error: Non-rejection (retention) of the null hypothesis falsely (not-rejecting the null hypothesis when the alternative hypothesis is true).

 $Pr(type \ I \ error) = Pr(reject \ H_0 \ | \ H_0 \ holds)$ $Pr(type \ II \ error) = Pr(not \ reject \ H_0 \ | \ H_A \ holds)$

Significance level : $\alpha = Pr(type \ I \ error)$ Power = 1 – Pr(type II error)

General Hypothesis Test Procedure:

- i. Write down the null and alternative hypotheses.
- ii. Select an appropriate test statistic for the test and compute it based on data.
- iii. Sketch the distribution of the test statistic and mark the observed value on the plot (also the "opposite" value if the test is two-sided).
- iv. Compute the tail area (or bounds for the tail area), which gives the p-value (multiply the area by 2 for a two-sided alternative hypothesis).
- v. State the conclusion: If computationally possible, report the p-value; otherwise, compare the test statistic with the critical value.

Hypothesis Tests for the Mean:

To test against $H_0: \mu = \mu_0$: If σ_Y is known, use: $\frac{(\bar{y} - \mu_0)}{\sigma_Y/\sqrt{n}}$ and the standard Normal distribution; otherwise, use: $\frac{(\bar{y} - \mu_0)}{s_Y/\sqrt{n}}$ and the t_{n-1} – distribution.

Hypothesis Tests for the Difference in Means for Independent Samples:

To test against $H_0: \mu_Y = \mu_X$: If σ_Y and σ_X are known, use $\frac{\overline{y} - \overline{x}}{\sqrt{\frac{\sigma_Y^2}{n} + \frac{\sigma_X^2}{m}}}$ as a test statistic. If σ_Y and σ_X are unknown but assumed equal, use $\frac{\overline{y} - \overline{x}}{s_P \sqrt{\frac{1}{n} + \frac{1}{m}}}$ as a test statistic.

Single Factorial Models (analysed through ANOVA):

For factor levels i=1,...,k, $Y_{i,j} = \mu_i + \varepsilon_{i,j}$, with $\varepsilon_{i,j} \sim N(0,\sigma^2)$.

Simple Linear Regression (estimated through least squares):

$$Y_j = \beta_0 + \beta_1 x_j + \varepsilon_j$$
, with $\varepsilon_j \sim N(0, \sigma^2)$.

-0.4 -0.3 -0.1 -0.0 This tab	-0.9 -0.7 -0.5	-1.4 -1.1 -1.0		-2.9 -2.6 -2.7 -2.4 -2.1 -2.1	z - 3.4 - 3.2 - 3.0
-0.4 .3446 .3409 .3372 .3336 .3300 .3264 .3228 . -0.3 .3821 .3783 .3745 .3707 .3669 .3632 .3594 . -0.2 .4207 .4168 .4129 .4090 .4052 .4013 .3974 . -0.1 .4602 .4562 .4522 .4483 .4443 .4404 .4364 . -0.0 .5000 .4960 .4920 .4880 .4840 .4801 .4761 . This table was generated using the "CDF" command in Minitab	.1841 .2119 .2420 .2743 .3085	.0808 .0968 .1151 .1357 .1587	.0287 .0359 .0446 .0548 .0668	.0019 .0026 .0035 .0047 .0062 .0062 .0107 .0139 .0179	.00 .0003 .0005 .0010 .0013
.3409 .3783 .4168 .4562 .4960 enerated	.1814 .2090 .2389 .2709 .3050	.0793 .0951 .1131 .1335 .1562	.0281 .0351 .0436 .0537 .0655	.0018 .0025 .0034 .0045 .0060 .0080 .0180 .0136 .0174	.01 .0003 .0005 .0007 .0009
.3372 .3745 .4129 .4522 .4920	.1788 .2061 .2358 .2676 .3015	.0778 .0934 .1112 .1314 .1539	.0274 .0344 .0427 .0526 .0643	.0018 .0024 .0033 .0044 .0059 .0078 .0102 .0132 .0170 .0217	.0003 .0005 .0006 .0009
.3336 .3707 .4090 .4483 .4880 .4880	.1762 .2033 .2327 .2643 .2981	.0764 .0918 .1093 .1292 .1515	.0268 .0336 .0418 .0516 .0630	.0017 .0023 .0032 .0043 .0057 .0075 .0075 .0075 .0075 .0129 .0166	.03 .0003 .0004 .0006 .0009 .0012
.3300 .3669 .4052 .4443 .4840 F" com	.1736 .2005 .2297 .2611 .2946	.0749 .0901 .1075 .1271 .1492	.0262 .0329 .0409 .0505 .0618	.0016 .0023 .0031 .0041 .0055 .0073 .0073 .0125 .0162	.04 .0003 .0004 .0006 .0008
.3264 .3632 .4013 .4404 .4801 mand ii	.1711 .1977 .2266 .2578 .2912	.0735 .0885 .1056 .1251 .1469	.0256 .0322 .0401 .0495 .0606	.0016 .0022 .0030 .0040 .0054 .0071 .0071 .0071 .0094 .0122 .0158	.0003 .0004 .0004 .0008
.3228 .3594 .3974 .4364 .4364 .4761	.1685 .1949 .2236 .2546 .2877	.0721 .0869 .1038 .1230 .1446	.0250 .0314 .0392 .0485 .0594	.0015 .0021 .0029 .0039 .0052 .0069 .0052 .0091 .0119 .0154	.06 .0003 .0004 .0008 .0008
.3192 .3557 .3936 .4325 .4721 ab.	.1660 .1922 .2206 .2514 .2843	.0708 .0853 .1020 .1210 .1423	.0244 .0307 .0384 .0475 .0582	.0015 .0021 .0028 .0038 .0051 .0068 .0068 .0089 .0116 .0150 .0192	.07 .0003 .0004 .0005 .0008
.3156 .3520 .3897 .4286 .4681	.1635 .1894 .2177 .2483 .2810	.0694 .0838 .1003 .1190 .1401	.0239 .0301 .0375 .0465 .0571	.0014 .0020 .0027 .0037 .0049 .0066 .0087 .0113 .0146 .0188	.0003 .0004 .0005 .0007
.3121 .3483 .3859 .4247 .4641	.1611 .1867 .2148 .2451 .2776	.0681 .0823 .0985 .1170 .1379	.0233 .0294 .0367 .0455 .0559	.0014 .0019 .0026 .0036 .0048 .0048 .0064 .0110 .0143 .0143	.09 .0002 .0003 .0005 .0007 .0010
3.0 3.4 3.2	2.5 2.7 2.8 2.9	2.0 2.1 2.3 2.4	1.9 1.9	0.5 0.6 1.0 1.2 1.4	0.0 0.1 0.2 0.4
.9987 .99993 .9995 .9997	.9938 .9953 .9965 .9974 .9981	.9773 .9821 .9861 .9893 .9918	.9332 .9452 .9554 .9641 .9713	.6915 .7257 .7580 .7881 .8159 .8413 .8643 .8643 .8643 .8849 .9032 .9192	.00 .5000 .5398 .5793 .6179 .6554
.9987 .9991 .9993 .9995 .9997	.9940 .9955 .9966 .9975 .9982	.9778 .9826 .9864 .9896 .9920	.9345 .9463 .9564 .9649 .9719	.6950 .7291 .7611 .7910 .8186 .8438 .8665 .8869 .9049	.01 .5040 .5438 .5832 .6217 .6591
.9987 .9991 .9994 .9996 .9997	.9941 .9956 .9967 .9976 .9983	.9783 .9830 .9868 .9898 .9922	.9357 .9474 .9573 .9656 .9726	.6985 .7324 .7642 .7939 .8212 .8461 .8686 .8888 .9066 .9222	.02 .5080 .5478 .5871 .6255 .6628
.9988 .9991 .9994 .9996 .9997	.9943 .9957 .9968 .9977 .9983	.9788 .9834 .9871 .9901 .9925	.9370 .9484 .9582 .9664 .9732	.7019 .7357 .7673 .7967 .8238 .8238 .8485 .8708 .8708 .8907 .9082	.03 .5120 .5517 .5910 .6293
.9988 .9992 .9994 .9996 .9997	.9945 .9959 .9969 .9977 .9984	.9793 .9838 .9875 .9904 .9927	.9382 .9495 .9591 .9671 .9738	.7054 .7389 .7704 .8264 .8508 .8729 .8925 .9099	.04 .5160 .5557 .5948 .6331 .6700
.9989 .9992 .9994 .9996 .9997	.9946 .9960 .9970 .9978 .9984	.9798 .9842 .9878 .9906 .9929	.9394 .9505 .9599 .9678 .9744	.7088 .7422 .7734 .8023 .8289 .8289 .8531 .8531 .8531 .8531 .8749 .8749 .9115	.05 .5199 .5596 .5987 .6368 .6736
.99989 .99992 .99994 .99996 .99997	.9948 .9961 .9971 .9979 .9985	.9803 .9846 .9881 .9931	.9406 .9515 .9608 .9750	.7123 .7454 .7764 .8051 .8315 .8554 .8770 .8770 .9131	.06 .5239 .5636 .6026 .6406 .6772
.9989 .9992 .9995 .9996 .9997	.9949 .9962 .9972 .9979	.9808 .9850 .9884 .9911 .9932	.9418 .9525 .9616 .9693 .9756	.7157 .7486 .7794 .8078 .8340 .8340 .8577 .8790 .8790 .9147 .9292	.07 .5279 .5675 .6064 .6443
.99990 .99993 .99996 .99997	.9951 .9963 .9973 .9980	.9812 .9854 .9887 .9913 .9934	.9429 .9535 .9625 .9699 .9761	.7190 .7517 .7823 .8166 .8365 .8599 .8810 .8897 .9162 .9306	.08 .5319 .5714 .6103 .6480
.99990 .99995 .99997 .99998	.9952 .9964 .9974 .9981 .9986	.9817 .9857 .9916 .9936	.9441 .9545 .9633 .9706 .9767	.7224 .7549 .7852 .8133 .8389 .8621 .8830 .9015 .9177 .9319	.09 .5359 .5753 .6141 .6517 .6879

Standard Normal Cumulative Probabilities

_ν	Q(.9)	Q(.95)	Q(.975)	Q(.99)	Q(.995)	Q(.999)	Q(.9995)
1	3.078	6.314	12.706	31.821	63.657	318.317	636.607
2	1.886	2.920	4.303	6.965	9.925	22.327	31.598
3	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	1.325	1.725	2.086	2.528	2.845	3.552	3.849
21	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	1.319	1.714	2.069	2.500	2.807	3.485	3.768
24	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	1.316	1.708	2.060	2.485	2.787	3.450	3.725
26	1.315	1.706	2.056	2.479	2.779	3.435	3.707
27	1.314	1.703	2.052	2.473	2.771	3.421	3.690
28	1.313	1.701	2.048	2.467	2.763	3.408	3.674
29	1.311	1.699	2.045	2.462	2.756	3.396	3.659
30	1.310	1.697	2.042	2.457	2.750	3.385	3.646
40	1.303	1.684	2.021	2.423	2.704	3.307	3.551
60	1.296	1.671	2.000	2.390	2.660	3.232	3.460
120	1.289	1.658	1.980	2.358	2.617	3.160	3.373
8	1.282	1.645	1.960	2.326	2.576	3.090	3.291
	· · · · · ·						

t-Distribution Quantiles

This table was generated using the "INVCDF" command in Minitab.

END OF EXAMINATION