
STAT2201 Assignment 6

Question 1

Regression methods were used to analyze the data from a study investigating the relationship
between roadway surface temperature (x) and pavement deflection (y). Summary quantities
were n = 20,

∑
yi = 12.75,

∑
y2i = 8.86,

∑
xi = 1478,

∑
x2i = 1.432158 × 105 and

∑
xiyi =

1083.67.

(a) Calculate the least squares estimates of the slope and intercept. Graph the regression line.
Estimate σ2.

Substituting the summary quantities into the equations given in the condensed lecture
notes we get:

β̂1 =

∑
yixi − (

∑
yi)(

∑
xi)

n∑
x2i −

(
∑

xi)
2

n

=
1083.67− (12.75)(1478)

20

143215.8− (1478)2

20

= 0.0041612

β̂0 = ȳ − β̂1x̄

=

∑
yi

n
− β̂1

∑
xi
n

=
12.75

20
− 0.0041612

1478

20
= 0.3299892

To calculate the estimate of the variance, first the Sum of Squares of the Errors needs to
be calculated. Expanding the equation in the condensed lecture notes gives:

SSE =
∑

(yi − β̂0 − β̂1xi)
2

=
∑

(y2i − 2β̂0yi + β̂2
0 − 2β̂1xiyi + 2β̂0β̂1xi + β̂2

1x
2
i )

=
∑

yi − 2β̂0
∑

yi + nβ̂2
0 − 2β̂1

∑
xiyi + 2β̂0β̂1

∑
xi + β̂2

1

∑
x2i

= 0.1432976

Now substituting this into the σ2 equation

σ̂2 = MSE =
SSE

n− 2

=
0.1432976

20− 2

= 0.007961
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(b) Use the equation of the fitted line to predict what pavement deflection would be observed
when the surface temperature is 85°F.

To find the fitted value, the value 85 is substituted for x in the linear equation

y(85) = β̂0 + β̂1 × 85

= 0.683689

So there is a pavement deflection of 0.683689.

(c) What is the mean pavement deflection when the surface temperature is 90°F?

Again substituting 90 into the linear equation

y(90) = 0.7044949

(d) What change in mean pavement deflection would be expected for a 1°F change in surface
temperature?

With each 1°F change in surface temperature the pavement deflection would change by
the slope of the linear model (β1). So the change in mean pavement deflection that would
be expected fro a 1°F change in surface temperature is 0.0041612.

Question 2. House Selling Prices
An article in Technometrics by S.C. Narula and J.F Wellington [“Prediction, Linear Regression,
and a Minimum Sum of Relative Errors” (1977, Vol. 19)] presents data on the selling price and
annual taxes for 24 houses. The data is stored in (11-6.csv).

(a) Assuming that a simple linear regression model is appropriate, obtain the least squares
fit relating selling price to taxes paid. What is the estimate of σ2?

Julia can be used to read in the data and then a model fitted using glm as shown below.

using DataFrames, Distributions, GLM, PyPlot
prices = readtable("11-6.csv")
model = glm(@formula(SalePrice_1000~Taxes_local_school_county_1000),prices,
Normal(),IdentityLink())
DataFrames.DataFrameRegressionModel{GLM.GeneralizedLinearModel{GLM.GlmResp{Ar c

ray{Float64,1},Distributions.Normal{Float64},GLM.IdentityLink},GLM.DenseP c

redChol{Float64,Base.LinAlg.Cholesky{Float64,Array{Float64,2}}}},Array{Fl c

oat64,2}}

↪→

↪→

↪→

Formula: SalePrice_1000 ~ 1 + Taxes_local_school_county_1000

Coefficients:
Estimate Std.Error z value Pr(>|z|)

(Intercept) 13.3202 2.57172 5.17948 <1e-6
Taxes_local_school_county_1000 3.32437 0.390276 8.518 <1e-16

modelcoeff=coef(model)
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So the least squares model for this data is Sale Price = 13.3202+3.3244 Taxes. To obtain
the estimate of σ2 the following code is used:

sum((prices[:SalePrice_1000].-modelcoeff[1].-modelcoeff[2].*prices[:Taxes_loc c

al_school_county_1000]).^2)/(size(prices,1)-2)↪→

8.76775295199138

Therefore σ̂2 = 8.767753.

(b) Find the mean selling price given that the taxes paid are x = 7.50.

Substituting the value x = 7.50 into the equation obtained above the following result
is obtained

13.3202 + 3.3244× 7.50 = 38.2529635.

So the mean selling price given that the taxes paid are x = 7.50 is $3.825296× 104.

(c) Calculate the fitted value of y corresponding to x = 5.8980. Find the corresponding resid-
ual.

Again to calculate the fitted values the value x = 5.8980 is substituted into the equa-
tion for the model.

13.3202 + 3.3244× 5.8980 = 32.9273208.

To calculate the residual, the observed value at this x value is required. The observed
value is 30.9. The residual is then the difference between the observed value and the fitted
value

32.9273208− 30.9 = −2.0273208.

(d) Calculate the fitted ŷi for each value of xi used to fit the model. Then construct a graph of
ŷi versus the corresponding observed value yi and comment on what this plot would look
like if the relationship between y and x was a deterministic (no random error) straight
line. Does the plot actually obtained indicate that taxes paid is an effective regressor
variable in predicting selling price?

First the values of ŷi need to be calculated, which can be done with the following Ju-
lia code.

yhat=modelcoeff[1].+modelcoeff[2].*prices[:Taxes_local_school_county_1000]

Using these values the following scatter plot can be obtained

PyPlot.scatter(yhat,prices[:SalePrice_1000])
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Given that there is little variation around the diagonal line that would be expected, it can
be said that taxes paid is an effective regressor of selling price.

Question 3. Rocket Motor

A rocket motor is manufactured by bonding together two types of propellants, an igniter and a
sustainer. The shear strength of the bond y is thought to be a linear function of the age of the
propellant x when the motor is cast. The data is stored in (11-13.csv).

(a) Draw a scatter diagram of the data. Does the straight-line regression model seem to be
plausible?

To draw the scatter plot of the data the following Julia code is used:

rocket=readtable("11-13.csv")
# Correct unusual value (typo)
rocket[:Strength_y_psi_][rocket[:ObservationNumber].==11]=rocket[:Strength_y_ c

psi_][rocket[:ObservationNumber].==11]/10↪→

PyPlot.scatter(rocket[:Age_x_weeks_],rocket[:Strength_y_psi_])

This produces
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As seen in the figure above, there is a negative linear trend in the data so a linear model
would be appropriate.

(b) Find the least squares estimates of the slope and intercept in the simple linear regression
model. Find an estimate of σ2.

rockmodel=
glm(@formula(Strength_y_psi_~Age_x_weeks_),rocket,Normal(),IdentityLink())↪→

DataFrames.DataFrameRegressionModel{GLM.GeneralizedLinearModel{GLM.GlmResp{Ar c

ray{Float64,1},Distributions.Normal{Float64},GLM.IdentityLink},GLM.DenseP c

redChol{Float64,Base.LinAlg.Cholesky{Float64,Array{Float64,2}}}},Array{Fl c

oat64,2}}

↪→

↪→

↪→

Formula: Strength_y_psi_ ~ 1 + Age_x_weeks_

Coefficients:
Estimate Std.Error z value Pr(>|z|)

(Intercept) 2623.3 45.3275 57.8743 <1e-99
Age_x_weeks_ -36.9501 2.96555 -12.4598 <1e-34

So the model that is obtained is Strength = 2623.2952584+−36.950085 Age. To estimate
σ2 the following code is used:

rockcoeff= coef(rockmodel)
rockyhat= rockcoeff[1].+rockcoeff[2].*rocket[:Age_x_weeks_]
sum((rocket[:Strength_y_psi_].-rockyhat).^2)./(size(rocket,1)-2)

9802.84515529937
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So σ̂2 = 9802.8451553.

(c) Estimate the mean shear strength of a motor made from propellant that is 20 weeks old.

Substituting 20 weeks into the model given above

2623.2952584 +−36.950085× 20 = 1884.2935589

So the mean sheet strength would be 1884.2935589 psi.

(d) Obtain the fitted values ŷi that correspond to each observed value yi. Plot ŷi versus yi
and comment on what this plot would look like if the linear relationship between shear
strength and age were perfectly deterministic (no error). Does this plot indicate that age
is a reasonable choice of regressor variable in this model?

Earlier the ŷi have been calculated so only the scatter plot code is needed:

PyPlot.scatter(rockyhat,rocket[:Strength_y_psi_])

The deviation of the points along the diagonal is evenly spread with no other patter, so
the linear model appears to be a reasonable choice here.

Question 4. Regression without the Intercept Term
Suppose that we wish to fit a regression model for which the true regression line passes through
the point (0,0). The appropriate model is y = βx + ε. Assume that we have n pairs of data
(x1, y1), (x2, y2), . . . , (xn, yn).

(a) Find the least squares estimate of β.

First define L

L =
∑

(yi − βxi)
2
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Differentiate to find critical point

∂L

∂β
= −2

∑
(yi − βxi)xi = 0

Rearrange to find β

0 = −2
∑

yixi + 2β
∑

x2i

β
∑

x2i =
∑

yixi

β =

∑
yixi∑
x2i

(b) Fit the model y = βx + ε to the chloride concentration roadway area data stored in
(11-22.csv). Plot the fitted model on a scatter diagram of the data and comment on the
appropriateness of the model.

First read in the data and then using the equation above calculate β Now using this

chloride = readtable("11-22.csv")
Ch=sum(chloride[:ChlorideConcentration_y].*chloride[:RoadwayArea_x])/sum(chlo c

ride[:RoadwayArea_x].^2)↪→

21.031460567201325

to plot the model on top of the scatter plot of the data

PyPlot.scatter(chloride[:RoadwayArea_x],chloride[:ChlorideConcentration_y])
PyPlot.plot([0,2],[0;2]*Ch,"r")

Looking at the plot of the data, it follows the model well with small deviation away from
the line. Given that it is expected that Chloride Concentration would be zero when the
Roadway Area is zero this model is appropriate.
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Question 5. Body Mass Index
The World Health Organization defines obesity in adults as having a body mass index (BMI)
higher than 30. In a study of 250 men at Bingham Young University, 23 are by this definition
obese. How good is waist (size in inches) as a predictor of obesity? A logistic regression model
was fit to the data:

log

(
p

1− p

)
= −41.828 + 0.9864 waist

where p is the probability of being classified as obese.

(a) Does the probability of being classified as obese increase or decrease as a function of waist
size? Explain.

As the slope is greater than zero, the log odds of being classified obese would increase as
waist size increased. As such the probability p would increase as the ratio of p to 1 − p
would need to get larger.

(b) What is the estimated probability of being classified as obese for a man with a waist size
of 36 inches?

First rearrange the equation given so that the probability is given

log

(
p

1− p

)
= −41.828 + 0.9864 waist

p

1− p
= exp(−41.828 + 0.9864 waist)

p = (1− p) exp(−41.828 + 0.9864 waist)
p(1 + exp(−41.828 + 0.9864 waist)) = exp(−41.828 + 0.9864 waist)

p =
exp(−41.828 + 0.9864 waist)

1 + exp(−41.828 + 0.9864 waist)

=
1

1 + exp(41.828− 0.9864 waist)

Now substitute the waist size of 36 inches into this equation

p =
1

1 + exp(41.828− 0.9864× 36
= 0.001801

(c) What is the estimated probability of being classified as obese for a man with a waist size
of 42 inches?

Again substituting into the equation for probability, a man with a waist size of 42 inches
has a probability of being classified as obese of 0.4015046.

(d) What is the estimated probability of being classified as obese for a man with a waist size
of 48 inches?

Again substituting into the equation for probability, a man with a waist size of 48 inches
has a probability of being classified as obese of 0.996007.

(e) Make a plot of the estimated probability of being classified as obese as a function of waist
size
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To create the plot, first create a vector of waist sizes (size 106) and then plot the function
worked out above for the probability.

waist=linspace(32,50,10^6)
PyPlot.plot(waist,1./(1.+exp(41.828.-0.9864.*waist)))
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