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About:

These condensed course notes are designed as an aid for lecture participation, tutorial participa-
tion, assignment preparation and reading of the course book. The course is structured with 10 study
units, 1-10. It is recommended to attend lecture and tutorial sessions with printouts of the notes for
the relevant unit as well as earlier units. For example, when attending lectures associated with unit
5, bring print outs of at least units 1-5. These will help you follow the lectures and tutorials. See the
course website for a detailed lecture and tutorial schedule.

A major goal of this course is to enable students to “talk the language” of probability and statistics.
This includes understanding of terms such as probability, events, random variables, distributions,
means, moments, estimation, confidence intervals, hypothesis tests, regression and much more. Each
of these concepts on its own, entails a variety of associated concepts, results, formulas and properties.
Hence the volume of terms and concepts is rather large in comparison to the course duration. This
document’s goal is to alleviate hardships associated with this, by giving a succinct description of the
content.



The course units are as follows:

Unit 1 — Introduction
An overview of the terms: probability, statistics, data-analysis, data science, inference, experi-
mentation, deterministic models, stochastic models, statistical models. Introduction to the Julia
language and an overview of alternatives. Simulation examples.

Unit 2 — Probability and Monte Carlo
Probability spaces, outcomes and events. Operations on events as subsets of the sample space.
The meaning of probabilistic statements. Independence. Conditional probability and the law of
total probability. Pseudorandom number generation and Monte Carlo in a bit more depth.

Unit 3 — Distributions
Random variables. Mathematical description of the distribution of discrete and continuous
random variables. Probability mass functions, probability density functions and cumulative dis-
tribution functions. Expectation, mean, variance, standard deviation and moments. Quantiles.
Discrete uniform and binomial distributions. Uniform (continuous), exponential and Normal
(Gaussian) distributions. Using the Normal distribution table.

Unit 4 — Joint Distributions
Bivariate and multivariate probability distributions. Marginal distributions. Covariance and cor-
relation. Independent random variables. Expectations of functions of several random variables.
Means and variance of sums and linear combinations of random variables.

Unit 5 — Descriptive Statistics
Statistics as functions of a sample: sample mean, sample variance and common summarising
functions. Box plots. Constructing histograms. Samples with two or more variables. Sample
correlation. Scatter plots. Time series. Cumulative plots including probability plots.

Unit 6 — Statistical Inference Ideas
Random samples. Point estimates. The sampling distribution of a statistic. The central limit
theorem. Confidence interval idea. Confidence intervals for the mean when the variance is known
or for large samples. Prediction intervals. Hypothesis test ideas. Types of error in hypothesis
testing. P-value. A general procedure for hypothesis testing.

Unit 7 — Single Sample Inference
The t-distribution. Confidence intervals for the mean of a Normal distribution when the variance
is not known. Hypothesis tests for the mean of a Normal distribution when the variance is not
know (the t-test).

Unit 8 — Two Sample Inference
Confidence intervals and hypothesis tests for the difference in means of a Normal distribution
when the variance is not known (the two sample t-test). Pooled sample variance. Approximations
when population variances are assume difference. Understanding model assumptions.

Unit 9 — Linear Regression
Fitting a line through points using least squares. The meaning of linear statistical models.
Simple linear regression (slope and intercept). Residual analysis. Properties of the leas square
estimators. R squared. Hypothesis tests for regression. A brief discussion of transformations.
Logistic regression.

Unit 10 — What more is there
A survey of basic tools from a first statistics course not covered here: Chi-square tests for good-
ness of fit and independence, non-parameteric tests for fitting distributions, analysis of variance
(ANOVA), experimental design, multi-variable regression, principal components analysis, gener-
alized linear models, time-series analysis, survival analysis, reliability modelling, queueing theory
and related stochastic models dealing with random processes.
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Introduction and Julia

> Probability is a measure of the likelihood of an event occurring and Probability theory is a

branch of mathematics dealing with probabilities.

Statistics is the science of data and involves probability due to: (i) The random nature of
sampling data. (ii) Probability theory is useful for devising statistical models and techniques.

Data Science is an emerging field, combining statistics, big-data, machine learning and
computational techniques.

There are thousands of active statistics researchers around the world and tens of thousands
statisticians and data scientists.

Within the field of statistics, there are specialisations in biostatistics, mathematical statis-
tics, non-parametric statistics, machine learning, linear models, survival analysis,
Baysian statistics, Geo-spatial statistics and many more.

Within the field of Probability theory, there are more theoretical researchers dealing with
abstract mathematical models as well as researchers and practitioners dealing with applied
probability, also related to stochastic operations research. Applied probability contains
reliability theory, biological population models, inventory theory, queueing theory
and a few other related fields.

Data analysis is the process of curating, organising and analysing data sets to make inferences.

Statistical Inference is the process of making inferences about population parameters
(often never fully observed) based on observations collected as part of samples.

A statistic or summary statistic is a quantity calculated from a sample.

Data can be collected and analysed through a retrospective study, observational study,
designed experiments or a combination.

When collecting data, the notion of time sometimes plays a key role.

A deterministic model of a physical, chemical, biological, financial or related scenario does
not involve any randomness.

A stochastic model contains built in randomness. Different realisations (runs) of the model
yield different outcomes or trajectories.

A statistical model is a stochastic model of suited directly for inference.

Some models are mechanistic and are based on basic physical (or related) principles. Other
models are empirical and are of the more “black box” or “grey box” type. Statistical models
are often empirical, but a statistical model can be incorporated with a mechanistic model.

Simulation (in the context of mathematical models) is the process of generating observations/-
trajectories/outcomes using a computer based on a model. In case of a stochastic or statistical
model, this is called Monte Carlo (famous casino) simulation and uses random numbers gen-
erated on the computer (often pseudorandom numbers).

An example of a pseudorandom sequence is the classic linear congruential generator:
Znt1 = (@z, +¢)  mod m,

where z( is some initial seed and a, ¢ and m are parameters. For example a known “good” set
of parameters is,

a = 69069, c=1, m = 232,




> In this course we will use the Julia programming language, v0.5.0 through uq.juliabox.com.

> There are dozens of possible software packages and languages for statistics, data-analysis, data-
science and scientific computing. Here is a partial list:

1.
2.

R - Has become the language of choice for the statistics community.

Matlab - Often the language of choice for engineering, especially, IEEE systems and con-
trol.

3. Octave - An open source alternative to Matlab.

4. Scilab - Another open source alternative to Matlab.

5. Mathematica - A general purpose mathematics, data-science, numerical computing plat-

form. Made it’s name with superb symbolic computation abilities. Very powerful in many
other domains.

6. Maple - Similar to Mathematica with strong symbolic capabilities.

7. Wolfram Alpha Pro - A more user friendly version of Mathematica, uses more natural

language and less programming.

8. Python (including NumPy) - Often the language of choice for Data Science.

9. General programming languages — C/C++, Java, C#, Go, Swift, Fortran (to name

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

a few)— Not specifically tailored for scientific computing and data-analysis, although they
often have many libraries.

Languages (mostly) from the past — Lisp, Smalltalk, Pascal — Influenced current lan-
guages.

JavScript — Runs on web-browser (together with html and css). Not really tailored for
scientific computation.

PHP, NodesJS — Server side for supporting web-pages. Not really tailored for scientific
computation.

Excel (and similar such as Apple’s Numbers) - General spreadsheet software. Often
powerful enough for quick simple computations or much more. May require plug-in language
such as Visual Basic in Excel for specific macros.

Excel like Statistics packages - SPSS and Minitab. More geared towards observations
(rows) and variables (columns) than Excel and often yield very easy to use output of
common statistical procedures.

Specific Statistics and Machine Learning software and packages — E.g. Win-
BUGS, H20, Google Tensor Flow and much more.

Specific civil, mechanical and aerospace modelling languages and software pack-
ages — You will use these in your career.

Latex - The typesetting language we use for these notes. Not a scientific computing
language.

SQL - A Database Query Language for relational databases. Not a scientific computing
language.

Assembly, LLVM — Low level (not for us).

Julia - A relatively new (still in version 0.5.0) open sourced general purpose scientific
computing language. Similar in nature to Python and Matlab, but strongly typed and Just
In Time compiled hence very fast in execution.

> We are using iJulia, a Jupyter style notebook running on a web browser through JuliaBox.
Current alternatives include a local install of iJulia, the Julia REPL (command line), a plug-in
into the Atom Editor - we won’t use these.



Here is an example of statistical analysis of the linear congruential generator in Julia:

using PyPlot

#Define the parameters of the generator

a = 69069
c =1
m = 2732;

#This is a function in Julia, it takes z and returns the next value
# according to the LCG.
#Note that ’%’ is modulo
function nextZ(z)
return (a*z + c) % m
end

#Let’s set an arbitrary number for the initial seed
z = 2017

#Run for NN steps.
NN=10"6

#Will store all the values of the LCG in an array of integers.
intData=Int64 []

#Loop and iterate
for i in 1:NN
push! (intData,z)
z = nextZ(z)
end

#Now create also real values (floating point) on the interval [0,1].
#Julia is strongly typed and to divide z by m we need to cast

#Note that [value(z) for z in datal] is called a comprehension in Julia
realData = [z/m for z in intDatal

#Plot a segment of the datapoints
subplot (211)
PyPlot.plot (1:1000, intData[1:1000],".")

#Plot a histogram. Does it look uniform?
subplot (212)
PyPlot.plt[:hist](realData[120:242],10)

#Look at the sample mean, sample variance and 1/12.
#The latter is the theoretical

#variance of uniform(0,1) random variables.

mean (realData), var(realData), 1/12.

Continuing with this example, we see the Central Limit Theorem in Action:

#sampleSize
kk = 2 #try this for k=1, k=2, k=4, k=10 and k=100

#chop the daata into samples, each of size kk
samples = [realDatalkk*i+1:kk*(i+1)]
for i in 0:Int64(length(realData)/kk) -2]

#map the mean function (this is what "." does) on each of the samples.
means=mean. (samples)

PyPlot.plt[:hist] (means ,100);




2 Probability and Monte Carlo

> An experiment that can result in different outcomes, even though it is repeated in the same
manner every time, is called a random experiment.

> The set of all possible outcomes of a random experiment is called the sample space of the
experiment, and is denoted as §2.

e A sample space is discrete if it consists of a finite or countable infinite set of outcomes.

e A sample space is continuous if it contains an interval (either finite or infinite) of real
numbers, vectors or similar objects.

> An event is a subset of the sample space of a random experiment.

e The union of two events is the event that consists of all outcomes that are contained in
either of the two events or both. We denote the union as E; U Es.

e The intersection of two events is the event that consists of all outcomes that are contained
in both of the two events. We denote the intersection as £ N Es.

e The complement of an event in a sample space is the set of outcomes in the sample space
that are not in the event. We denote the complement of the event £ as E. The notation
EC¢ is also used in other literature to denote the complement. Note that EUE = Q.

> Two events, denoted E7 and Es are mutually exclusive if: F1 N Ey = @ where @ is called the
empty set or null event.

> A collection of events, E1, Es, ..., E}), is said to be mutually exclusive if for all pairs,
ENE; =@.
> The definition of the complement of an event implies that: (E°)¢ = E.
> The distributive law for set operations implies that
(AUB)NC=(AnC)u(BNC(C) and (ANB)UC =(AUuC)Nn(BUCQ).
> DeMorgan’s laws imply that
(AUB) = A°N B° and (ANB)¢ = A°UB°.

> Union and intersection are commutative operations: ANB = BNA and AUB = BUA.

> Probability is used to quantify the likelihood, or chance, that an outcome of a random experi-
ment will occur.

> Whenever a sample space consists of a finite number N of possible outcomes, each equally
likely, the probability of each outcome is 1/N.

> For a discrete sample space, the probability of an event F, denoted as P(E), equals the sum
of the probabilities of the outcomes in E.

> If Q) is the sample space and E' is any event in a random experiment,
(1) P(Q2) =1.
(2) 0< P(E)<1.
(3) For two events Ey and Eo with Ey N Ey = & (disjoint),
P(E1 U Eg) = P(El) + P(EQ)



(4) P(E€)=1—- P(E).
(5) P(0)=o0.
The probability of event A or event B occurring is,
P(AUB)=P(A)+ P(B)— P(AnB).
If A and B are mutually exclusive events,
P(AUB)=P(A)+ P(B)
For a collection of mutually exclusive events,

P(E1UE2UUEk>:P(E1)+P(E2)+P(Ek)

The probability of an event B under the knowledge that the outcome will be in event A is
denoted P(B | A) and is called the conditional probability of B given A.

The conditional probability of an event B given an event A, denoted as P(B | A), is
P(ANB)

P(B|4) = =55

for  P(A) > 0.

The multiplication rule for probabilities is: P(AN B) = P(B| A)P(A) = P(A| B)P(B).

For an event B and a collection of mutual exclusive events, E1, Fo, ..., E; where their union is
). The law of total probability yields,

P(B)=P(BNEy)+P(BNEy)+-+ P(BNEy)
= P(B| E\)P(Ey) + P(B | E2)P(E2) + -+ + P(B | E)P(Ey).

Two events are independent if any one of the following equivalent statements is true:
(1) P(A[B) = P(A).
(2) P(B|A)= P(B).
(3) P(ANB) = P(A)P(B).

Observe that independent events and mutually exclusive events, are completely different
concepts. Don’t confuse these concepts.

For multiple events E1, Fs, ..., E, are independent if and only if for any subset of these events

A pseudorandom sequence is a sequence of numbers Uy, Us, . .. with each number, Uy, depend-
ing on the previous numbers Ug_1,Ui_o,...,U; through a well defined functional relationship
and similarly U; depending on the seed Uy. Hence for any seed, Up, the resulting sequence
Uq,Us,... is fully defined and repeatable. A pseudorandom sequence often lives within a dis-
crete domain as {0,1,...,2% —1}. It can then be normalised to floating point numbers with,
U
Ry = 964 k_ 1’

A good pseudorandom sequence has the following attributes among others:

1. Tt is quick and easy to compute the next element in the sequence.

2. The sequence of numbers Ri, Ra,... resembles properties as an i.i.d. sequence of uni-
form(0,1) random variables (i.i.d. is defined in Unit 4).

Computer simulation of random experiments is called Monte Carlo and is typically carried out
by setting the seed to either a reproducible value or an arbitrary value such as system time.

Random experiments may be replicated on a computer using Monte Carlo simulation.



3 Distributions

> A random variable X is a numerical (integer, real, complex, vector etc.) summary of the
outcome of the random experiment. The range or support of the random variable is the set
of possible values that it may take. Random variables are usually denoted by capital letters.

> A discrete random variable is an integer/real-valued random variable with a finite (or count-
ably infinite) range.

> A continuous random variable is a real valued random variable with an interval (either finite
or infinite) of real numbers for its range.

> The probability distribution of a random variable X is a description of the probabilities
associated with the possible values of X. There are several common alternative ways to describe
the probability distribution, with some differences between discrete and continuous random
variables.

> While not the most popular in practice, a unified way to describe the distribution of any scalar
valued random variable X (real or integer) is the cumulative distribution function,

F(z)=P(X < z).

> It holds that

(1) 0< Flz) <
(2) limgy_ oo F(x) = 0.

(3) limyyoo F(z) = 1.

(4) If x <y, then F(z) < F(y). That is, F(+) is non-decreasing.

> Distributions are often summarised by numbers such as the mean, y, variance, o2, or mo-

ments. These numbers, in general do not identify the distribution, but hint at the general
location, spread and shape.

> The standard deviation of X is 0 = V02 and is particularly useful when working with the
Normal distribution.

> Given a discrete random variable X with possible values z1, 29, ..., z,, the probability mass
function of X is,
p(z) = P(X = x).

Note: In [MonRun2014] and many other sources, the notation used is f(x) (as a pdf of a
continuous random variable).

> A probability mass function, p(z) satisfies:

(1) plai) > 0,
) > ) =1
=1

> The cumulative distribution function of a discrete random variable X, denoted as F'(x), is

Fa)= 3 plas).

x; <z
> P(X = z;) can be determined from the jump at the value of x. More specifically

p(z;) = P(X = z;) = F(z;) — lim F(x;).

ztz;



The mean or expected value of a discrete random variable X, is

p=EX) =3 ap().

The expected value of h(X) for some function A(-) is:

E [h(X)] =" h(z)p(a).

The k’th moment of X is,

B(X*) =Y "a"p(a).
x
The variance of X, is

o? =V(X)=E(X —p)* =) (z—p)’p) =Y " p) - p*

T

A random variable X has a discrete uniform distribution if each of the n values in its range,
xr1,T9,...,Ty, has equal probability. I.e.

p(z;) = 1/n.

Suppose that X is a discrete uniform random variable on the consecutive integers a,a + 1,a +

2,...,b, for a <b. The mean and variance of X are
b b—a+1)2-1
B(X) = ;a and  V(x) = (L=¢ ; -1

The setting of n independent and identical Bernoulli trials is as follows:

(1) There are n trials.

(1) The trials are independent.

(2) Each trial results in only two possible outcomes, labelled as “success” and “failure”.

(3) The probability of a success in each trial denoted as p is the same for all trials.
The random variable X that equals the number of trials that result in a success is a binomial
random variable with parameters 0 < p <1 and n =1,2,.... The probability mass function
of X is

p(z) = <”>px(1 —p)"T oz =0,1,...,n.

Useful to remember from algebra: the binomial expansion for constants a and b is
" /n
= kbn—k‘
@+oy =3 ( k) a
k=0
If X is a binomial random variable with parameters p and n, then,

E(X)=np and V(X)=np(l—-p).




> Given a continuous random variable X, the probability density function (pdf) is a function,
f(z) such that,

(1) f(z) = 0.
(2) f(x) =0 for x not in the range.
) ] fade=1

(4) For small Az, f(x) Az~ P(X € [z, + Ax)).

(5) Pla< X <b) = fbf(x)dac = area under f(x) from a to b.

a

> Given the PDF, f(x) we can get the CDF as follows:

F(x):P(X<:U):/f(u)du for —00 << 00.

> Given the CDF, F(z) we can get the PDF:

d

fl@) = = F(z).

> The mean or expected value of a continous random variable X, is

o0

uw=FEX)= / x f(z)dx.

—00

> The expected value of h(X) for some function A(-) is:

E[h(X)} - / h(z)f(z) de
> The k’th moment of X is, .
E(X*) = /a;k (z) da
> The variance of X, is h
02 = V(X) = /OO@ P pa)ds = [ ) do - g

is a continuous uniform random variable or “uniform random variable” for short.
> If X is a continuous uniform random variable over a < x < b, the mean and variance are:

b
/L:E(X):a;_ and o?=V(X)=

10



> A random variable X with probability density function

1 R C
flz) = ——=e 2% ) —00 < < 00,

oV 2T

is a Normal random variable with parameters p where —oo < p < 0o, and o > 0. For this
distribution, the parameters map directly to the mean and variance,

E(X)=p and V(X)=o>

The notation N(u,o?) is used to denote the distribution. Note that some authors and software
packages use o for the second parameter and not o2.

> A Normal random variable with a mean and variance of:
pu=0 and o%=1

is called a standard NNormal random variable and is denoted as Z. The cumulative distri-
bution function of a standard Normal random variable is denoted as

O(z)=Fz(z) = P(Z < 2),
and is tabulated in a table.
> It is very common to compute P(a < X < b) for X ~ N(u,0?). This is the typical way:
Pla<X<b=Pla—p<X-—p<b—p)

-P(fS < <)
(e z <)
=o(*5") - o(*5)

We get:

> The exponential distribution with parameter A > 0 is given by the survival function,
F(z)=1—-F(z) = P(X >z) =e .
> The random variable X that equals the distance between successive events from a Poisson process
with mean number of events per unit interval A > 0.
> The probability density function of X is
f@) =X for 0<z<oo.

Note that sometimes a different parameterisation, § = 1/X is used (e.g. in the Julia Distributions
package).

> The mean and variance are:

1
w=FEX)=— and 0-2:V(X):p

> The exponential distribution is the only continuous distribution with range [0, c0) exhibiting the
lack of memory property. For an exponential random variable X,

P(X>t+s|X >t)=P(X > s).

> Monte Carlo simulation makes use of methods to transform a uniform random variable in a
manner where it follows an arbitrary given given distribution. One example of this is if U ~
Uniform(0, 1) then X = —4log(U) is exponentially distributed with parameter A.

11



4 Joint Probability Distributions

> A joint probability distribution of two random variables is also referred to as bivariate prob-
ability distribution.

> A joint probability mass function for discrete random variables X and Y, denoted as
pxy (z,y), satisfies the following properties:

(1) pxy(z,y) >0 for all z, y.
(2) pxy(z,y) =0 for (x,y) not in the range.

(3) >>> pxv(z,y) = 1, where the summation is over all (z,y) in the range.
(4) pxy(z,y) = P(X =z, Y =y).

> A joint probability density function for continuous random variables X and Y, denoted as
fxv(z,y), satisfies the following properties:

(1) fxy(z,y) >0 for all z, y.
(2) fxy(z,y) =0 for (z,y) not in the range.

(3) T Ofofxy(x,y) dz dy = 1.

(4) For small Az, Ay:  fxy(z,y) Az Ay =~ P((X7 Y)e[z,o+Ax) x [y,y+ Ay))
(5) For any region R of two-dimensional space,

P((X, Y) e R) = [[ fxy(z,y) da dy.
R

> A joint probability density function can also be defined for n > 2 random variables (as can
be a joint probability mass function). The following needs to hold:

(1) leXQ...Xp(x17x27 o ’xn) Z 0
2) [ [ [ fxixe.x, (@1, 2, 2n)dey dog ... de, = 1.

> Most of the concepts in this section, carry over from bivariate to general multivariate distribu-
tions (n > 2).

> The marginal distributions of X and Y as well as conditional distributions of X given a
specific value Y = y and vice versa can be obtained from the joint distribution.

> If the random variables X and Y are independent, then fxy(z,y) = fx(x) fy(y) and similarly
in the discrete case.

> The expected value of a function of two random variables is:
E[h(X, Y)] = // hz,y) fxy (z,y) dz dy for X, Y continuous.

> The covariance is a common measure of the relationship between two random variables (say
X and Y). It is denoted as cov(X,Y) or oxy, and is given by:

oxy = B|(X = ux)(Y = py)| = B(XY) = juxpey-

> The covariance of a random variable with itself is its variance.

12



The correlation between the random variables X and Y, denoted as pxy, is

COV(X,Y) oxXy
PXY = = .
V(X)V(Y) oxoy

For any two random variables X and Y, —1 < pxy < 1.

If X and Y are independent random variables, o xy = 0 and pxy = 0. The opposite case does not
always hold: In general pxy = 0 does not imply independence. But for jointly Normal random
variables it does. In any case, if pxy = 0 then the random variables are called uncorrelated.

When considering several random variables, it is common to consider the (symmetric) Covari-
ance Matrix, ¥ with ¥; ; = cov(X;, Xj).

The probability density function of a bivariate Normal distribution is
Fxv ) :
XY\T,Y;0X,0Y, bX, by, P) =
2roxoyy/1 — p?

XQXP{2( = [(fﬂ—ux)2_2p(w—ﬂx)(y—uy) (y—m?”

+
1—p?) o% ox0y ol

for —oo < & < 00 and —oo < y < 00,
with parameters ox > 0, oy >0, —00 < pux < 00, —00 < puy < 00, and —1 < p < 1.

Given random variables X1, Xo, ..., X,, and constants ci, co, ..., ¢y, the (scalar) linear combi-
nation
Y= X1 +cXo+ - +cpXy

is often a random variable of interest.

The mean of the linear combination is the linear combination of the means,
E(Y)=cE(X1)+cE(X2)+ -+ cnE(Xy).

This holds even if the random variables are not independent.

The variance of the linear combination is as follows:

V(Y) = V(X)) + GV (Xa) + -+ V(X)) +2) > cicjeov(X;, X;)
i<j

If X1, Xs,...,X, are independent (or even if they are just uncorrelated).

V(Y)=clV(X1) + 3V (Xe) + -+ AV(Xy).

In case the random variables X, ..., X, were jointly Normal then, Y ~ Normal (E(Y)7 V(Y)).

That is, linear combinations of Normal random variables remain Normally distributed.

A collection of random variables, Xi,..., X, is said to be i.i.d., or independent and iden-
tically distributed if they are mutually independent and identically distributed. This means
that the (n - dimensional) joint probability density is a product of the individual densities.

In the context of statistics, a random sample is often modelled as an i.i.d. vector of random
variables. X1,...,X,.

An important linear combination associated with a random sample is the sample mean:

X = Z?:l Xi 1
n

1 1
n n n

If X; has mean p and variance o2 then sample mean (of an i.i.d. sample) has,

— — o

EX)=p  V(X)=—.
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5 Descriptive Statistics

> Descriptive statistics deals with summarizing data using numbers, qualitative summaries,
tables and graphs.

> Here are some types of data configurations:

1
2
3.
4

. Generalizations from two samples to k samples (each of potentially different sample size,

ot

. Single sample: x1,x2,...,Z,.
. Single sample over time (time series): @y, Tiy, ..., Ty, With t1 <ty < ... < t,.
Two samples: z1,...,x, and y1,...,Ym.

nNy... ,nk).

Observations in tuples: (z1,y1), (z2,%2), -, (Tn,Yn)-

6. Generalizations from tuples to vector observations (each vector of length /),

(x%,...,m{),...,(wl ...,xz).

n’ n

> Individual variables may be categorical or numerical. Categorical variables (taking values
in one of several categories) may be ordinal meaning that they be sorted (e.g. “a”, “b”, “c”,
“d”), or not (e.g. “cat”, “dog”, “fish”).

> A statistic is a quantity computed from a sample (assume here a single sample x1,...,x,).
Here are very common and useful statistics:

1.

2.

3.
4.

> Ti
_ r1+---+tx, i=1
The sample mean: = = =
n n
n n
(z; —2)* Y2} —n7?
. =1 =1
The sample variance: s> = * =1
n—1 n—1

The sample standard deviation: s = V/s2.

Order statistics work as follows: Sort the sample to obtain the sequence of sorted ob-

servations, denoted z(y),...,x () where, x(q) < () < ... < x(,). Some common order
statistics:

(a) The minimum min(z1,...,7,) = ().

(b) The maximum max(z1,...,Ty) = T(,).

(¢) The median

Tin if n is odd,
median = {1(—;1)

Q(l‘(%) + $(%+1)) if n is even.

Note that the median is the 50’th percentile and the 2nd quartile (see below).

(d) The gth quantile (¢ € [0,1]) or alternatively the p = 100g percentile (measured in
percents instead of a decimal), is the observation such that p percent of the observations
are less than it and (1—p) percent of the observations are greater than it. In cases (as is
typical) that there is not such a precise observation, it is a linear interpolation between
two neighbouring observations (as is done for the median when n is even). In terms
of order statistics, the ¢th quantile is approximately (not taking linear interpolations
into account) z([44n))- Here [z] denotes the nearest integer in {1,...,n} to z.

(e) The first quartile, denoted Q1 is the 25th percentile. The second quartile (Q2) is
the median. The third quartile, denoted ()3 is the 75th percentile. Thus half of the
observations lie between @1 and Q3. In other words, the quartiles break the sample
into 4 quarters. The difference Q3 — @1 is the interquartile range.

(f) The sample range is z(,) — 7).
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Constructing a Histogram (Equal Bin Widths)

(1) Label the bin (class interval) boundaries on a horizontal scale.
(2) Mark and label the vertical scale with frequencies or counts.

(3) Above each bin, draw a rectangle where height is equal to the frequency (or count).

A Kernel Density Estimate (KDE) is a way to construct a Smoothed Histogram. While
construction is not as straightforward as steps (1)—(3) above, automated tools can be used.

Both the histogram and the KDE are not unique in the way they summarize data. With these
methods, different settings (e.g. number of bins in histograms or bandwidth in a KDE) may
yield different representations of the same data set. Nevertheless, they are both very common,
sensible and useful visualisations of data.

The box plot is a graphical display that simultaneously describes several important features of
a data set, such as centre, spread, departure from symmetry, and identification of unusual
observations or outliers. It is often common to plot several box plots next to each other for
comparison.

An anachronistic, but useful way for summarising small data-sets is the stem and leaf diagram.

In a cumulative frequency plot the height of each bar is the total number of observations
that are less than or equal to the upper limit of the bin.

The Empirical Cumulative Distribution Function (ECDF) is,

n

F(x) = %Zl{xz < x}.

i=1
Here 1{-} is the indicator function. The ECDF is a function of the data, defined for all .

Given a candidate distribution with CDF F(z), a probability plot is a plot of the ECDF
(or sometimes just it’s jump points) with the y-axis stretched by the inverse of the CDF F~1(-).
The monotonic transformation of the y-axis is such that if the data comes from the candidate
F(z), the points would appear to lie on a straight line. Names of variations of probability plots
are the P-P plot and Q-Q plot (these plots are similar to the probability plot). A very common
probability plot is the Normal probability plot where the candidate distribution is taken to
be Normal(7, s2).

The Normal probability plot can be useful in identifying distributions that are symmetric but
that have tails that are “heavier” or “lighter” than the Normal.

A time series plot is a graph in which the vertical axis denotes the observed value of the
variable and the horizontal axis denotes time.

A scatter diagram is constructed by plotting each pair of observations with one measurement
in the pair on the vertical axis of the graph and the other measurement in the pair on the
horizontal axis.

The sample correlation coefficient r,, is an estimate for the correlation coefficient, p, pre-
sented in the previous unit:




6 Statistical Inference Ideas

> Statistical Inference is the process of forming judgements about the parameters of a pop-
ulation, typically on the basis of random sampling.

> The random variables X1, Xs,..., X, are an (i.i.d.) random sample of size n if

(a) the X;’s are independent random variables and

(b) every X; has the same probability distribution.

> A statistic is any function of the observations in a random sample, and the probability distri-
bution of a statistic is called the sampling distribution.

> Any function of the observation, or any statistic, is also a random variable. We call the
probability distribution of a statistic a sampling distribution. A point estimate of some
population parameter 6 is a single numerical value 0 of a statistic ©. The statistic © is called
the point estimator.

> The most common statistic we consider is the sample mean, X, with a given value denoted
by Z. As an estimator, the sample mean is an estimator of the population mean, .

> Central Limit Theorem (for sample means):
If X1, Xo,..., X, is a random sample of size n taken from a population with mean p and finite
variance o2 and if X is the sample mean, the limiting form of the distribution of

X
~o/vn

as n — 00, is the standard Normal distribution.

Z

> This implies that X is approximately Normally distributed with mean p and standard devia-

tion o /+/n.

> The standard error of X is given by o/y/n. In most practical situations o is not known but
rather estimated in this case, the estimated standard error, (denoted in typical computer
output as "SE”), is s/y/n where s is the point estimator,

> Central Limit Theorem (for sums):
Manipulate the central limit theorem (for sample means and use Y . ; X; = nX. This yields,

7 — i Xi—np
no? ’

which follows a standard Normal distribution as n — oo.

> This implies that > ; X; is approximately Normally distributed with mean np and vari-

ance TLUZ.

> Knowing the sampling distribution (or the approximate sampling distribution) of a statistic is
the key for the two main tools of statistical inference that we study:

(a) Confidence intervals — a method for yielding error bounds on point estimates.

(b) Hypothesis testing — a methodology for making conclusions about population parame-
ters.
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> The formulas for most of the statistical procedures use quantiles of the sampling distribu-
tion. When the distribution is N(0,1) (standard Normal), the a’s quantile is denoted z, and

satisfies:
Za 1 7w2
o= / e 2 dwx.
oo V2T

A common value to use for a is 0.05 and in procedures the expressions z1_q or z1_,/p appear.
Note that in this case z;_,/5 = 1.96 ~ 2.

> A confidence interval estimate for u is an interval of the form [ < pu < u, where the end-points
[ and u are computed from the sample data. Because different samples will produce different
values of [ and u, these end points are values of random variables L and U, respectively. Suppose
that
P(LSMSU):l—a.

The resulting confidence interval for y is
[ <p<u.

The end-points or bounds [ and u are called the lower- and upper-confidence limits (bounds),
respectively, and 1 — « is called the confidence level.

> If T is the sample mean of a random sample of size n from a Normal population with known
variance o2, a 100(1 — a)% confidence interval on y is given by

_ g _ o
T — Zl*a/Qﬁ < M <z+ ZI,Q/QW.

> Note that it is roughly of the form, 7 — 2 SE < p <7 + 2 SE(Z).

> Confidence interval formulas give insight into the required sample size: If z is used as an
estimate of p, we can be 100(1 — )% confident that the error |Z — p| will not exceed a specified
amount A when the sample size is not smaller than

2
n= (212/2 U) .

> A statistical hypothesis is a statement about the parameters of one or more populations.
The null hypothesis, denoted Hy is the claim that is initially assumed to be true based on
previous knowledge. The alternative hypothesis, denoted H; is a claim that contradicts the
null hypothesis.

> For some arbitrary value pg, a two-sided alternative hypothesis would be expressed as
follows:

Ho:p=po  Hy:p# po

whereas a one-sided alternative hypothesis would be expressed as either:
Ho:p=po Hyp < po or Ho:p=po Hy oy > po.

> The standard scientific research use of hypothesis is to “hope to reject” Hy so as to have statistical
evidence for the validity of Hj.

> An hypothesis test is based on a decision rule that is a function of the test statistic. For
example: Reject Hy if the test statistic is below a specified threshold, otherwise don’t reject.

17



> Rejecting the null hypothesis Hy when it is true is defined as a type I error. Failing to reject
the null hypothesis Hy when it is false is defined as a type II error.

Hy Is True Hy Is False
Fail to reject Hy: No error Type II error
Reject Hy: Type I error No error

a = P(type I error) = P(reject Hy ‘ Hj is true).
B = P(type Il error) = P(fail to reject Hy ‘ Hj is false and H; is true).

> The power of a statistical test is the probability of rejecting the null hypothesis Hy when the
alternative hypothesis is true.

> A typical example of a simple hypothesis test has Hy : 1 = g Hi : p = p1, where ug and
w1 are some specified values for the population mean. This test isn’t typically practical but is
useful for understanding the concepts at hand.

> Assuming that pg < p1 and setting a threshold, 7, reject Hy if the T > 7, otherwise don’t reject.

> Fxplicit calculation of the relationships of 7, a;, 8, n, o, pg and w7 is possible in this case.

> In most hypothesis tests used in practice (and in this course), a specified level of type I error, «
is predetermined (e.g. o = 0.05) and the type II error is not directly specified.

> The probability of making a type II error 3 increases (power decreases) rapidly as the true value
of u approaches the value hypothesized in Hy.

> The probability of making a type II error also depends on the sample size n - increasing the
sample size results in a decrease in the probability of a type II error.

> The population (or natural) variability (e.g. described by o) also affects the power.

> The P-value is the smallest level of significance that would lead to rejection of the null hypothesis
Hjy with the given data. That is, the P-value is based on the data. It is computed by considering
the location of the test statistic under the sampling distribution based on Hy.

> It is customary to consider the test statistic (and the data) significant when the null hypothesis
Hj is rejected; therefore, we may think of the P-value as the smallest o at which the data are
significant. In other words, the P-value is the observed significance level.

> (learly, the P-value provides a measure of the credibility of the null hypothesis. Computing the
exact P-value for a statistical test is not always doable by hand.

> It is typical to report the P-value in studies where Hy was rejected (and new scientific claims
were made). Typical (“convincing”) values can be of the order 0.001.

> A General Procedure for Hypothesis Tests is

Parameter of interest: From the problem context, identify the parameter of interest.
Null hypothesis, Hy: State the null hypothesis, Hy.

Alternative hypothesis, Hi: Specify an appropriate alternative hypothesis, Hj.
Test statistic: Determine an appropriate test statistic.

Reject Hj if: State the rejection criteria for the null hypothesis.

Computations: Compute any necessary sample quantities, substitute these into the equa-
tion for the test statistic, and compute the value.

(7) Draw conclusions: Decide whether or not Hy should be rejected and report that in the
problem context.
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7 Single Sample Inference

> The setup is a sample x1,...,z, (collected values) modelled by an i.i.d. sequence of random
variables, X1,...,X,.

> The parameter at question in this unit is the population mean, p = E[X;]. A point estimate is
T (described by the random variable X).

> We devise hypothesis tests and confidence intervals for 1, distinguishing between the (unrealistic
but simpler) case where the population variance, o2, is known, and the more realistic case where
it is not known and estimated by the sample variance, s2.

> For very small samples, the results we present are valid only if the population is Normally
distributed. But for non-small samples (e.g. n > 20, although there isn’t a clear rule), the
central limit theorem provides a good approximation and the results are approximately correct.

> Testing Hypotheses on the Mean, Variance Known (Z-Tests)
Model: X, "R N(u,o?) with g unknown but o2 known.
Null hypothesis:  Hp : = po-

I T — o X — o

Test statistic: e Z = ——F.
est statistic z o/ o/

Alternative P-value Rejection Criterion
Hypotheses for Fixed-Level Tests
Hy:p# o P:2[1—<I>(|z])] 2> 21_q/2 OF 2< Z4/2
Hy:p> o P:1—<I>(z) zZ> 2Z_q
Hy:p < po P:<I>(z) z < Zg

> Note: For Hy : u # g, a procedure identical to the preceding fixed significance level test is:

Reject Hg : = po if either T<aorZ>b
where

a =y — Zl_a/gﬁ and b= po+ Zl—a/Qﬁ

Compare these results with the confidence interval formula (presented in previous unit):
_ o _ o
T — Zl—a/2% SpSTH+ Zl—a/2%'

> In this case, if Hg is not true and H; holds with a specific value of u = pq, then it is possible to
compute the probability of type II error, f3.

> In the (very realistic) case where o2 is not known, but rather estimated by S2, we would like to

replace the test statistic, Z, above with,
X —
T — Mo7
S/v/n

but in general, T no longer follows a Normal distribution.

> Under Hy : 1 = po, and for moderate or large samples (e.g. n > 100) this statistic is approxi-
mately Normally distributed just like above. In this case, the procedures above work well.
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> But for smaller samples, the distribution of 7" is no longer Normally distributed. Nevertheless,
it follows a well known and very famous distribution of classical statistics: The Student-t
Distribution.

> The probability density function of a Student-t Distribution with a parameter v, referred to as
degrees of freedom, is,
I'i(v+1)/2 1
f(z;v) I )/] — 00 < x < 00,

~ /Tl (v)2) {(wQ/v) N 1} (wt1)/2

where I'(+) is the Gamma-function. It is a symmetric distribution about 0 and as v — oo it
approaches a standard Normal distribution.

> The following mathematical result makes the t-distribution useful: Let X7, Xo,..., X, be an
i.i.d. sample from a Normal distribution with mean p and variance o2. The random variable, T'
has a t distribution with n — 1 degrees of freedom.

> Now, knowing the distribution of 7' (and noticing it depends on the sample size, n), allows us
to construct hypothesis tests and confidence intervals when o2 is not known, analogous to the
(Z-tests and confidence intervals) presented above.

> If T and s are the mean and standard deviation of a random sample from a Normal distribution
with unknown variance o2, a 100(1 — )% confidence interval on s is given by

_ s _ s
T — tlfa/Q,nflﬁ <SpuT+ t17a/2,n71%

where t1_, /2,1 is the 1 — a/2 quantile of the ¢ distribution with n — 1 degrees of freedom.

> A related concept is a 100(1 — «)% prediction interval (PI) on a single future observation
from a Normal distribution is given by

/ 1 / 1
T — tl,a/Q’n,ls 1 + ﬁ S Xn+1 S T+ tl,a/z,n,ls 1 + ;

This is the range where we expect the n + 1 observation to be, after observing n observations
and computing T and s.

> Testing Hypotheses on the Mean, Variance Unknown (T-Tests)
Model: X; i N(u,o?) with both p and 02 unknown.

Null hypothesis:  Hp : pp = po-

T — po 7o X~ Ho

Test statistic: t=—— = —

est statistic S/ S/vn
Alternative P-value Rejection Criterion
Hypotheses for Fixed-Level Tests
Hy:p# po P =2[1—-F, 1(]t])] t >t a/2n-1 00t <tajan
H : > o P=1-F,; (t) t> tl—a,n—l
Hy : H < o P=F,1 (t) t < ta,nfl

Note that here, F,,_1(-) denotes the CDF of the t-distribution with n — 1 degrees of freedom.
As opposed to ®(-), it is not tabulated in standard tables and like ®(-) it cannot be explicitly
evaluated. So to calculate P-values, we use software.
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8 Two Sample Inference

> The setup is a sample z1, ..., z,, modelled by ani.i.d. sequence of random variables, Xi,..., X,,
and another sample y1, ..., y,, modelled by an i.i.d. sequence of random variables, Y7,...,Y,,.
Observations, x; and y; (for same ¢) are not paired. In fact, it is possible that n; # ng (unequal
sample sizes).

> The model assumed is, X; P N(p1,0%), Y; s N(p2,03).

Variations are: (i) equal variances: o? = 03 := o2 (ii) unequal variances: 03 # 03.

> We could carry single sample inference for each population separately. Specifically, for pu; =
E[X;] and py = E[X5]. However we focus on,

Ay = — p2 = E[Xi] — E[Yi].
For this difference in means we can carry out inference jointly.

> It is very common to ask if A, (=,<,>) 0, i.e. if u; (=, <,>) po. But we can also replace the
“0” with other values, e.g. p1 — s = Ag for some Ag.

> A point estimator for A, is X —Y (difference in sample means). The estimate from the data is
denoted by T — 7 (the difference in the individual sample means), with,

1 & 1 &
=1 =1

> In the case (ii) of unequal variances: Point estimates for 0% and o3 are the individual sample

variances,
2 1 & 2 2 1 & 2
Slznl_lz(iﬂi—@a 32:n2_12(yi—?)-
i=1 i=1

> In case (i) of equal variances, both S} and S3 estimate 0.

estimate can be obtained via the pooled variance estimator

In this case, a more reliable

g2 _ (m—1)Si+(n2 —1)53
p ny+no —2 '
> In case (i), under Hy:
X-Y-A
T = 0 t(n1+n2—2).
1 1
Spy | — + —
ny o n2

That is, the T test statistic follows a t-distribution with n; + ny — 2 degrees of freedom.

> In case (ii), under Hy, there is only the approximate distribution,

T XY T80 oy,
S2 52
ST, %
ni no

where the degrees of freedom are

(i) ()’

n1—1 TLQ—l

If v is not an integer, may round down to the nearest integer (when using a table).
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> Case (i):

Testing Hypotheses on Differences of Mean, Variance Unknown and Assumed Equal
(two sample T-Tests with equal variance)

Model:

Null hypothesis:

i.4.d.

X; K i.4.d.

N(M1702)7 sz ~

Ho : p1 — p2 = Ao

N(M%UQ)'

T—75—A X-Y-A

Test statistic: t= M, T=>2"" "0
1 N 1 g 1 R 1

o] — 1+ — =

b ni N9 P ni n2
Alternative P-value Rejection Criterion
Hypotheses for Fixed-Level Tests
H1 L1 — U2 75 AO P= 2[1 - Fn1+n272(|t‘)] t>t _a/2mnyd4ng—2 ©F t<ta/aniiny—2

Hy:pn —p2 > Ay

H1:#1*LL2<A0

P=1-Fp yn,—2(t)

P = Fy 4no—2 (t)

t> tlfa,n1+n272

t < ta,n1 +ng—2

> Case (ii):

Testing Hypotheses on Differences of Mean, Variance Unknown and NOT Equal
(two sample T-Tests with unequal variance)

1.0.d. i.0.d.

Model: X; " N(py,0?), Y; "X N(pg,03).
Null hypothesis: Hy: pp — pg = Ao.
T—-7—A X-Y-A

Test statistic: t= w, "

|S? 52 S? S2

1 72 1 72

ni no ni n2
Alternative P-value Rejection Criterion
Hypotheses for Fixed-Level Tests
Hy:pn—po# Do P =2[1-F(|])] t>tape Or t<ta,
leul—u2>A0 PZl—Fv(t) t>t1_aﬂ,
Hliﬂl—/L2<A0 P:Fv(t) t<ta,v

> Case (i) (Equal variances) - confidence interval:

_ 1 1 o 1 1
r—Y— tlfa/2,n1+n272 Sp 7171 + ;2 < - 2 < T—-y+ tlfa/2,n1+n272 Sp a + n72

> (Case (ii) (NOT Equal variances) - confidence interval:

2 2 2 2
Tt ST, % o _ < F_T4t 51, %
T—=Y—li—qa/pu - + g 1 —p2 S T —=Y+tia/20 n + T
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9 Linear Regression

> The collection of statistical tools that are used to model and explore relationships between
variables that are related in a nondeterministic manner is called regression analysis. Of key
importance is the conditional expectation,
EY |z)=py |, =00+ fx  with Y =P+ Biw+e,

where z is not random and ¢ is a Normal random variable with E(e) = 0 and V(¢) = o2.

> Simple Linear Regression is the case where both x and y are scalars, in which case the data
is,
(1'17 y1)7 SRR (xnv yn)
Then given estimates of Sy and (1 denoted by Bo and Bl we have

yi=Po+Pwi+e  i=1,2,...,n,
where e;, are the residuals and we can also define the predicted observation,
Ui = BO + Bl%‘-
Ideally it would hold that y; = 9; (e; = 0) and thus total mean squared error

n

L:= 88 = Ze = Z — ) = Z(yi — Bo — Buz:)?,

=1 =1

would be zero. But in practice, unless 02 = 0 (and all points lie on the same line), we have that
L >0.

> The standard (classic) way of determining the statistics (BO, 31) is by minimisation of L. The
solution, called the least squares estimators must satisfy

oL

Rl R — Byas) =0
B0 8o Z 50 lx )

OL A .

22l . = 2 i — Po — i)z =0
Tl =2 20 e

Simplifying these two equations yields

n n
nBo +3129€¢ = Zyi
i=1

i1
n n n

5 A 2

Bo E x; + B E x; = E YiT;
P =1 i=1

These are called the least squares normal equations. The solution to the normal equations
results in the least squares estimators 5y and ;. Using the sample means, T and 7 the
estimators are,
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> The following quantities are also of common use:

Hence,

Further,

n n n

SSr=> (wi—-u?%  SSk=>_Hi—-9>  SSe=)_(yi—9)"

=1 =1 =1

> The Analysis of Variance Identity is

i(yi_y>2 :i<@i_y>2+i (yi—@i)Q

=1 =1 =1
or,
SSr =SSk + SSk.
Also, SSp = (184,

> An Estimator of the Variance, o2 is

SSE

6% := MSp =
n—2

> A widely used measure for a regression model is the following ratio of sum of squares, which is
often used to judge the adequacy of a regression model:

_SSr _, _ S8

2 _ = -
R - SSr SSr

B() = V()L
E(Bl) = 1, V<B1) = S(jx-

> In simple linear regression, the estimated standard error of the slope and the estimated
standard error of the intercept are

~2

w(5) = e )]
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> The Test Statistic for the Slope is

B — Bro

\/62/5')()(

Hy: p1=pio Hy: B # Bio
Under Hy the test statistic T follows a t - distribution with “n — 2 degree of freedom”.

> An alternative is to use the F' statistic as is common in ANOVA (Analysis of Variance) — not
covered fully in the course.
SSr/1 MSr

F = = .
SSp/(n—2)  MSg

Under Hj the test statistic F' follows an F - distribution with “1 degree of freedom in the
numerator and n — 2 degrees of freedom in the denominator”.

Analysis of Variance Table for Testing Significance of Regression

Source of Sum of Degrees of Mean Fj
Variation Squares Freedom Square

Regression SSg zﬁlSmy 1 MSg MSr/MSg
Error SSE =881 —B1Szy n—2 MSg

Total SSt n—1

> There are also confidence intervals for By and 1 as well as prediction intervals for observations.
We don’t cover these formulas.

> To check the regression model assumptions we plot the residuals e; and check for (i) Normality.
(ii) Constant variance. (iii) Independence.

Logistic Regression:

> Take the response variable, Y; as a Bernoulli random variable. In this case notice that E(Y) =
P(Y =1).

> The logit response function has the form

_exp(fBo + Biw)
2(r) - 1+ exp(fo + Ara)

> Fitting a logistic regression model to data yields estimates of 5y and ;.

> The following formula is called the odds

B(v) (

m = exp| fo + 51$)-
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10 Further Stats Overview

The course covered details associated with most of the key ideas appearing in chapters 1-11 of [Mon-
Run2014], our suggested introductory textbook for statistics and probability, suitable to a general
engineering audience. However, we also skipped quite a few sections from these chapters. We also
completely omitted chapters 12-15.

Based on the material that we did cover in detail (the bulk of chapters 1-11) and the exercises carried
out, the reader should be equipped with a basic understanding of the terms and concepts appearing
in probability and statistics. In future academic and/or professional tasks that the reader will carry
out, she may often need to expand her knowledge beyond the basic material covered in detail and
perhaps beyond the basic material covered in [MonRun2014].

In this respect, we now overview further aspects of probability and statistics from the book, not
covered in detail in the course. The aim is to give general feel about those additional subjects.

Material from Chapters 1-11

e 2-7: Bayes’ Theorem — This is an elementary addition to the subject of conditional probability
that has far reaching consequences. Conditional probability is all about the probability of A
given B. With Bayes’s theorem, the question becomes, “given that A happened, what do we
know about B”. That is, the roles of A and B are reversed.

e 3-7: Geometric and Negative Binomial Distributions — These discrete probability distri-
butions are friends of the Binomial distribution and appear in the context of repeated Bernoulli
trials. The geometric distribution describes the number of attempts/failures until success and
it’s generalization, the Negative Binomial distribution describes the number of attempts/failures
until a given number of successes.

e 3-9: Poisson Distribution — This discrete distribution occurs naturally when considering the
number of events occurring over a time interval and/or a region in space.

e 3-8: Hypergeometric Distribution — This discrete distribution describes the situation of
random sampling from a population without replacement. In this respect it is related to the
Binomial distribution (can be used to describe sampling from a population with replacement).

e 4-7: Normal Approximation to the Binomial and Poisson Distributions — The central
limit theorem acts on the binomial and Poisson distribution. These two discrete distributions
can be approximated by the Normal distribution.

e 4-9: Erlang and Gamma Distributions — This continuous asymmetric distribution of a
non-negative random variable is useful for modelling non-negative random variables. Erlang is
a special case of Gamma appearing as a sum of a finite number of i.i.d. exponential random
variables. It generalizes the exponential distribution.

e 4-10: Weibull Distribution — This continuous asymmetric distribution of a non-negative
random variable is often used in reliability analysis. It generalises the exponential distribution.

e 4-11: Lognormal Distribution — This continuous asymmetric distribution of a non-negative
random variable appears when transforming a Normal random variable, X, by eX.

e 4-12: Beta Distribution — This continuous asymmetric distribution generalizes the uniform
distribution allowing the distribution to have other shapes on finite support.

e 5-3.1: Multinomial Distribution — This discrete multi-variable distribution generalizes the
Binomial distribution to the case of several possible outcomes per Bernoulli trial.
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5-6: Moment-Generating Functions — A moment generating function is another analytical
way to view the distribution of a random variable (in addition to the CDF, PDF/PMF).

7-3.1: Unbiased Estimators — An estimator is unbiased if in expectation it gets the correct
value. The study of this subject explains the n — 1 in the denominator of the sample variance
(as opposed to having the more intuitive value n).

7-3: Other general concepts of point estimation — Point estimation is a key area of
statistics and is studied much further in mathematical statistics courses. There are more ways
to quantify and understand the behaviour of an estimator.

7-4.1: Method of moments for point estimation — This method of point estimation works
by solving equations specified by moment estimators in the data.

7-4.2: Method of maximum likelihood for point estimation — This general method of
point estimation has much theory associated with it. It is used in Logistic regression in the
course. It is a central part of the study of Mathematical statistics.

7-4.3: Bayesian Estimation of Parameters — Bayesian statistics is a large branch of statistics
which allows us to incorporate prior beliefs and knowledge in the estimation process. This is often
done by employing a prior distribution on the unknown parameter and then after carrying out
inference obtaining a posterior distribution of the unknown parameter. In Bayesian statistics,
as opposed to classic frequentist statistics (taught in most of this course), the parameter is always
considered a random variable.

8—4: Large Sample Confidence Intervals for a Population Proportion — This is about
estimating a population proportion. For e.g. “proportion of people who support a given can-
didate”. In case of large samples, confidence intervals for the population proportion can be
obtained using the Normal approximation to the Binomial distribution.

8—6: Bootstrap Confidence Interval — A general way of creating approximate confidence
intervals based on Monte Carlo simulation sampling of the estimators.

9-4: Tests on the Variance and Standard Deviation of a Normal Distribution —
Methods to check hypothesis about variance parameters of a population. These methods use
the Chi-squared (x?) distribution.

9-5: Tests on a Population Proportion — Methods to make hypothesis about a population
proportion as the unknown parameter.

9-7: Testing for Goodness of Fit — Methods for checking if a postulated distribution agrees
with the empirical distribution. Here one common method uses the fact that sums of squared
deviations of expected and observed proportions are approximately y? distributed.

9-8: Contingency Table Tests — A suite of methods that check if different categorial quantities
are independent or not. Here again, the y? distribution is used.

9-9: Nonparametric Procedures — Nonparametric statistics is a large branch of statistics
where there is no assumed family of distributions in the model. One method already studied in
Unit 5 is the Kernel Density Estimation. A classic nonparametric method that can be used
as an alternative to the T-test and Z-test is the signed rank test. A plus of this method is
that it does not assume any specific distribution. A drawback comes with less statistical power.

10-3: Wilcoxon Rank-Sum Nonparametric test for the difference of two means — This
is a another classic nonparametric method that can replace Z-tests and T-tests.

10-4: The paired t-test — This test comes together with an experimental design technique
that builds on the idea of coupling observations from two treatment (two populations) together
so as to reduce variability. For example if doing road testing for wear-and-tear of tyres, it
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means putting on the same car tyres of one type on the left side and another type on the right
side. This then potentially reduces the variability in differences of wear-and-tear between cars,
because variability due to driver/car attributes are cancelled. Mathematically the calculations
are identical to a single sample t-test, but conceptually the paired t-test is different. It is an
important thing to know for basic experimental design.

10-5: Inferences on the variances of two Normal distributions — This is a suite of
hypothesis tests (and confidence intervals) asking if two populations have the same variance or
not. From a model-selection perspective, using these tests can be sometimes useful for choosing
a specific model for comparing population means (as covered in the two sample inference, Unit

8).

10-6: Inferences on two population proportions — This is a suite of hypothesis tests (and
confidence intervals) comparing population proportions in two populations.

11-9: Regression on Transformed Variables — Linear regression on the original variables is
often not a sensible assumption. E.g. when there exists a logarithmic or quadratic relationship.
By transforming variables, linear regression may sometimes be applied to other models. Another
reason for (sometimes) transforming variables is to match the data to the model assumptions
(constant variance and Normal residuals).

Material from Further Chapters

Chapter 12 — Multiple Linear Regression — Linear regression goes well beyond finding the
relationship of Y on (the scalar) X. In many practical situations, X is taken as a vector and the
relationship of different components of this vector of Y are of interest. Multiple linear regression
is then used.

Chapter 13 — Design and Analysis of Single-Factor Experiments: The Analysis of
Variance — The Analysis of Variance (ANOVA) is a very common method for comparing means
of two or more populations under the assumption that variances are equal. It is key to know
that this is a method for comparing means, even though the name is variance. The variability
between sample means and within sample means is used to test the hypothesis that means are
different, or the same. Under the null-hypothesis, stating all means are equal, the test statistic
follows the well known F-distribution. ANOVA is often taught as part of a basic statistics
course and is a very common method in practice. Understanding ANOVA constitutes the basic
understanding leading towards design of experiments. Note the the case of two samples, was
covered in Unit 8 of the course (two sample inference). In that case, the T-test described is
closely related to ANOVA.

Chapter 14 — Design of Experiments with Several Factors — This is a more advanced aspect
of scientific statistics. Often there are several factors that are postulated and trying out all pos-
sible combinations is difficult. This branch of design of experiments suggests sampling methods
that allow to efficiently (from a statistical perspective) determine the validity of hypothesis. One
aspect here is two-way ANOVA and other more advanced aspects include factorial designs of
experiments.

Chapter 15 — Statistical Quality Control — This branch of industrial statistics is often used
in manufacturing/mining industries. The essence is to observe a time-series of statistics such as
means, variances and ranges. A key goal is to have criteria for indicating where the “process
is out of control” - indicating that some change has happened in the system and it should be
further investigated.
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