STAT2201, Semester 12016

Solution for Quiz \#2 (versions "A" and "B") - Solution amended: May 10
Let M be your month of birth, i.e. $M \in\{1,2, \ldots, 12\} . M=$ \qquad .

Question 1: Assume you are faced with a random sample $Y_{1}, Y_{2}, Y_{3}, Y_{4}$ coming from a normal population with mean 3 and variance 8^{2}. Denote the sample mean by \bar{Y}.
(aA) $\operatorname{Pr}\left(Y_{1} \leq \frac{M}{3}\right)=$ \qquad
(aB) $\operatorname{Pr}\left(Y_{1}>\frac{M}{3}\right)=$ \qquad
(bA) $\operatorname{Pr}\left(\bar{Y} \leq \frac{M}{3}\right)=$ \qquad
(bB) $\operatorname{Pr}\left(\bar{Y}>\frac{M}{3}\right)=$ \qquad

Solution: Here Y_{1} is distributed as $N\left(3,8^{2}\right)$ and the sample mean \bar{Y} is distributed $N\left(3, \frac{8^{2}}{4}\right)$ because it is a sample based on 4 . Hence the standard deviation of a single observation, Y_{1} is 8 and the standard deviation of the sample mean, \bar{Y} is $\frac{8}{\sqrt{4}}=4$.

Now the problem is just computation of probabilities of normal random variables. So by subtracting the mean and dividing by the appropriate standard deviation, the problem is transformed to computation of probabilities of standard normal random variable Z :

$$
\begin{aligned}
& \operatorname{Pr}\left(Y_{1} \leq \frac{M}{3}\right)=\operatorname{Pr}\left(Z \leq \frac{M / 3-3}{8}\right) \\
& \operatorname{Pr}\left(Y_{1}>\frac{M}{3}\right)=\operatorname{Pr}\left(Z>\frac{M / 3-3}{8}\right) \\
& \operatorname{Pr}\left(\bar{Y} \leq \frac{M}{3}\right)=\operatorname{Pr}\left(Z \leq \frac{M / 3-3}{4}\right) \\
& \operatorname{Pr}\left(\bar{Y}>\frac{M}{3}\right)=\operatorname{Pr}\left(Z>\frac{M / 3-3}{4}\right)
\end{aligned}
$$

Plugging in values we obtain:

	$M=1$	$M=2$	$M=3$	$M=4$	$M=5$	$M=6$	$M=7$	$M=8$	$M=9$	$M=10$	$M=11$
a_{A}	0.369441	0.385271	0.401294	0.417484	0.433816	0.450262	0.466793	0.483382	0.5	0.516618	0.533207
a_{B}	0.630559	0.614729	0.598706	0.582516	0.566184	0.549738	0.533207	0.516618	0.5	0.483382	0.466793
$\mathrm{~b}_{A}$	0.252493	0.279834	0.308538	0.338461	0.369441	0.401294	0.433816	0.466793	0.5	0.533207	0.566184
$\mathrm{~b}_{B}$	0.747507	0.720166	0.691462	0.661539	0.630559	0.598706	0.566184	0.533207	0.5	0.466793	0.433816

Question 2A: There are two types of bricks. Both types are normally distributed with unit variance. Regular bricks have a mean weight of $\mu_{0}=10 \mathrm{~kg}$. Deluxe bricks have a mean weight of $\mu_{A}=11 \mathrm{~kg}$. You collect a random a sample of 4 bricks known to be either all regular or all deluxe, but you are not sure which.
To make a decision, you design the following hypothesis test: You set $H_{0}: \mu=\mu_{0}$ and $H_{A}: \mu=\mu_{A}$. As the test statistic you take the sample mean, \bar{Y} and compare it to a threshold τ. If $\bar{Y}<\tau$ you retain H_{0} and otherwise you reject H_{0} and accept H_{A}. Set now $\tau=10+\frac{M}{10}$.
(a) Draw a sketch of the hypothesis test, showing the distribution of \bar{Y} under H_{0} and H_{A} and indicating the location of τ.
(b) Type I error $=$ \qquad
(c) Type II error $=$ \qquad

Solution: The standard deviation of the sample mean, \bar{Y} is $1 / \sqrt{4}=0.5$. Here are plots of the distributions of \bar{Y} with H_{0} on the left and H_{A} on the right, for all values of the threshold τ :

The Type I error is the area under the blue curve to the right of the threshold (vertical) line. The type $I I$ error is the area under the purple curve to the left of the threshold (vertical) line.

In calculating the probabilities of the type I and type II errors:

$$
\begin{aligned}
& \operatorname{Pr}(\text { Type I error })=\operatorname{Pr}\left(\bar{Y}_{\mu=10}>\tau\right)=\operatorname{Pr}\left(Z>\frac{\tau-10}{0.5}\right)=\operatorname{Pr}\left(Z>\frac{M}{5}\right) \\
& \operatorname{Pr}(\text { Type I error })=\operatorname{Pr}\left(\bar{Y}_{\mu=11}<\tau\right)=\operatorname{Pr}\left(Z<\frac{\tau-11}{0.5}\right)=\operatorname{Pr}\left(Z<\frac{M}{5}-2\right)
\end{aligned}
$$

Plugging in values we obtain:

	$M=1$	$M=2$	$M=3$	$M=4$	$M=5$	$M=6$	$M=7$	$M=8$	$M=9$	$M=10$	$M=11$
$M=12$											
(a)	0.4207	0.3446	0.2743	0.2119	0.1587	0.1151	0.08076	0.05480	0.03593	0.02275	0.01390
(b)	0.03593	0.05480	0.08076	0.1151	0.1587	0.2119	0.2743	0.3446	0.4207	0.5000	0.5793

Question 2B: (this is a slightly different version) There are two types of bricks. Both types are normally distributed with unit variance. Regular bricks have a mean weight of $\mu_{0}=20 \mathrm{~kg}$. Deluxe bricks have a mean weight of $\mu_{A}=19 \mathrm{~kg}$. You collect a random a sample of 4 bricks known to be either all regular or all deluxe, but you are not sure which.
To make a decision, you design the following hypothesis test: You set $H_{0}: \mu=\mu_{0}$ and $H_{A}: \mu=\mu_{A}$. As the test statistic you take the sample mean, \bar{Y} and compare it to a threshold τ. If $\bar{Y}>\tau$ you retain H_{0} and otherwise you reject H_{0} and accept H_{A}. Set now $\tau=19+\frac{M}{10}$.
(a) Draw a sketch of the hypothesis test, showing the distribution of \bar{Y} under H_{0} and H_{A} and indicating the location of τ.
(b) Type I error $=$ \qquad
(c) Type II error $=$ \qquad

Solution: As in the previous version, the standard deviation of the sample mean, \bar{Y} is $1 / \sqrt{4}=0.5$. Here are plots of the distributions of \bar{Y} with H_{0} on the right and H_{A} on the left, for all values of the threshold τ :

The Type I error is the area under the blue curve to the left of the threshold (vertical) line. The type $I I$ error is the area under the purple curve to the right of the threshold (vertical) line.

In calculating the probabilities of the type I and type II errors:

$$
\begin{aligned}
& \operatorname{Pr}(\text { Type I error })=\operatorname{Pr}\left(\bar{Y}_{\mu=20}<\tau\right)=\operatorname{Pr}\left(Z<\frac{\tau-20}{0.5}\right)=\operatorname{Pr}\left(Z<\frac{M}{5}-2\right) \\
& \operatorname{Pr}(\text { Type I error })=\operatorname{Pr}\left(\bar{Y}_{\mu=19}>\tau\right)=\operatorname{Pr}\left(Z>\frac{\tau-19}{0.5}\right)=\operatorname{Pr}\left(Z>\frac{M}{5}\right)
\end{aligned}
$$

Notice that these values are exactly as for version A above, only that the type I and type II error are reversed. Namely, plugging in values:

	$M=1$	$M=2$	$M=3$	$M=4$	$M=5$	$M=6$	$M=7$	$M=8$	$M=9$	$M=10$	$M=11$	$M=12$
(a)	0.03593	0.05480	0.08076	0.1151	0.1587	0.2119	0.2743	0.3446	0.4207	0.5000	0.5793	0.6554
(b)	0.4207	0.3446	0.2743	0.2119	0.1587	0.1151	0.08076	0.05480	0.03593	0.02275	0.01390	0.008198

NORMAL CUMULATIVE DISTRIBUTION FUNCTION: $\operatorname{Pr}(Z \leq x)$
$\begin{array}{lllllllllll}x & 0.00 & 0.01 & 0.02 & 0.03 & 0.04 & 0.05 & 0.06 & 0.07 & 0.08 & 0.09\end{array}$
$0.0 \quad 0.5000 \quad 0.50400 .50800 .51200 .51600 .51990 .52390 .52790 .53190 .5359$
$0.1 \quad 0.53980 .54380 .54780 .55170 .55570 .55960 .56360 .56750 .57140 .5753$
0.20 .57930 .58320 .58710 .59100 .59480 .59870 .60260 .60640 .61030 .6141
$0.3 \quad 0.61790 .62170 .62550 .62930 .63310 .63680 .64060 .64430 .64800 .6517$
$0.4 \quad 0.65540 .65910 .66280 .66640 .67000 .67360 .67720 .68080 .68440 .6879$
$0.5 \quad 0.69150 .69500 .69850 .70190 .70540 .70880 .71230 .71570 .71900 .7224$
$0.6 \quad 0.72570 .72910 .73240 .73570 .73890 .74220 .74540 .74860 .75170 .7549$
$0.7 \quad 0.75800 .76110 .76420 .76730 .77030 .77340 .77640 .77940 .78230 .7852$
$0.8 \quad 0.78810 .79100 .79390 .79670 .79950 .80230 .80510 .80780 .81060 .8133$
$\begin{array}{llllllllllllllllllll}0.9 & 0.8159 & 0.8186 & 0.8212 & 0.8238 & 0.8264 & 0.8289 & 0.8315 & 0.8340 & 0.8365 & 0.8389\end{array}$
$1.0 \quad 0.84130 .84380 .84610 .84850 .85080 .85310 .85540 .85770 .85990 .8621$
$1.1 \quad 0.86430 .86650 .86860 .87080 .87290 .87490 .87700 .87900 .88100 .8830$
$1.2 \quad 0.88490 .88690 .88880 .89070 .89250 .89440 .89620 .89800 .89970 .9015$
$1.3 \quad 0.90320 .90490 .90660 .90820 .90990 .91150 .91310 .91470 .91620 .9177$
$1.4 \quad 0.91920 .92070 .92220 .92360 .92510 .92650 .92790 .92920 .93060 .9319$
$1.5 \quad 0.93320 .93450 .93570 .93700 .93820 .93940 .94060 .94180 .94290 .9441$
$1.6 \quad 0.94520 .94630 .94740 .94840 .94950 .95050 .95150 .95250 .95350 .9545$
$1.7 \quad 0.95540 .95640 .95730 .95820 .95910 .95990 .96080 .96160 .96250 .9633$
$1.8 \quad 0.96410 .96490 .96560 .96640 .96710 .96780 .96860 .96930 .96990 .9706$
$1.9 \quad 0.97130 .97190 .97260 .97320 .97380 .97440 .97500 .97560 .97610 .9767$
$2.0 \quad 0.97720 .97780 .97830 .97880 .97930 .97980 .98030 .98080 .98120 .9817$
$2.1 \quad 0.98210 .98260 .98300 .98340 .98380 .98420 .98460 .98500 .98540 .9857$
$2.2 \quad 0.98610 .98640 .98680 .98710 .98750 .98780 .98810 .98840 .98870 .9890$
$2.3 \quad 0.98930 .98960 .98980 .99010 .99040 .99060 .99090 .99110 .99130 .9916$
$2.4 \quad 0.99180 .99200 .99220 .99250 .99270 .99290 .99310 .99320 .99340 .9936$
$2.5 \quad 0.99380 .9940 \quad 0.99410 .99430 .99450 .99460 .99480 .99490 .99510 .9952$
$2.6 \quad 0.99530 .99550 .99560 .99570 .99590 .99600 .99610 .99620 .99630 .9964$
$2.7 \quad 0.99650 .99660 .99670 .99680 .99690 .99700 .99710 .99720 .99730 .9974$
$2.8 \quad 0.99740 .99750 .99760 .99770 .99770 .99780 .99790 .99790 .99800 .9981$
$2.9 \quad 0.99810 .99820 .99820 .99830 .99840 .99840 .99850 .99850 .99860 .9986$
$3.0 \quad 0.99870 .99870 .99870 .99880 .99880 .99890 .99890 .99890 .99900 .9990$
$3.1 \quad 0.99900 .99910 .99910 .99910 .99920 .99920 .99920 .99920 .99930 .9993$
$3.2 \quad 0.99930 .99930 .99940 .99940 .99940 .99940 .99940 .99950 .99950 .9995$
$3.3 \quad 0.99950 .99950 .99950 .99960 .99960 .99960 .99960 .99960 .99960 .9997$
$3.4 \quad 0.99970 .99970 .99970 .99970 .99970 .99970 .99970 .99970 .99970 .9998$
$3.5 \quad 0.99980 .99980 .99980 .99980 .99980 .99980 .99980 .99980 .99980 .9998$
$3.6 \quad 0.99980 .99980 .99990 .99990 .99990 .99990 .99990 .99990 .99990 .9999$
$3.7 \quad 0.99990 .99990 .99990 .99990 .99990 .99990 .99990 .99990 .99990 .9999$
$3.8 \quad 0.99990 .99990 .99990 .99990 .99990 .99990 .99990 .99990 .99990 .9999$
3.91 .00001 .00001 .00001 .00001 .00001 .00001 .00001 .00001 .00001 .0000

