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 This course is for engineering (civil, mechanical, software…)

 Electronic Course Profile 
http://www.courses.uq.edu.au/student_section_loader.php?section=1&profileId=9
2234

http://www.courses.uq.edu.au/student_section_loader.php?section=1&profileId=92234


 If you are doing STAT2201 – 1 unit course

 If you are doing CIVL2530 (2 units), then STAT2201 is about half of the CIVL2530 
course.

 The Black Board site is joined for both courses

STAT2201 – 50%

CIVL2530

50%



 10 lectures

 2 streams (same material):
 Yoni Nazarathy (coordinator)
 Slava Vaisman 

 6 tutorial meetings during the semester, each mapping to a homework assignment

 2 hour final exam during the examination period, June 2017

 CIVL2530 students should attend both civil and stat (details below) activities. See 
the CIVL2530 course profile for the time table of the CIVL2530 activities.

 https://courses.smp.uq.edu.au/STAT2201/2018a/2018_weekByWeek.pdf

https://courses.smp.uq.edu.au/STAT2201/2018a/2018_weekByWeek.pdf


Assignments:  40% Best 5 out of 6, 8% each
Final Exam: 60% Must get at least 40/100 on 
the exam to pass the course (2 hours)
Exam examples : 
https://courses.smp.uq.edu.au/STAT2201/20
18a/

https://courses.smp.uq.edu.au/STAT2201/2018a/


 Tutors will not provide consultations (use the lecturers)

 Yoni - Thursdays12pm –1pm, 67-753.

 Slava – Tuesday 2pm-3pm 67-450

 For technical questions, please come to consultation hours.



Study units are (mostly) mapped to 

Applied Statistics and Probability for Engineers, by D. C. Montgomery and G. C. Run 



 Condensed Notes (can take to the exam!!!)

 Get it from https://courses.smp.uq.edu.au/STAT2201/2018a/

https://courses.smp.uq.edu.au/STAT2201/2018a/


 In this course, we use Julia

 Languages that worth noting

 R – major statistical language
 Matlab/Octave
 Python



 Probability vs Statistics and Data Science

 Deterministic vs Stochastic systems

 Inference

 Mechanistic and Empirical models



 Probability deals with predicting the likelihood of future events. Probability is about creating 
models (learning complex relationships).

 What is the likelihood of a rainy day (tomorrow) ?

 Statistics involves the analysis of the frequency of past events. Statistics is about collecting data.

 What is the average number of rainy days in Brisbane?

 Note that:
 Probability can help us to collect data in a better way, and,
 Statistics can be used for creating probabilistic models.

 Data Science is an emerging field, combining statistics, big-data, machine learning and
computational techniques.



 Deterministic systems

 Consider the (deterministic) function 𝑦𝑦 = 𝑥𝑥2.
 For any 𝑥𝑥 ∈ 𝑅𝑅 , the outcome 𝑦𝑦 is determined exactly. 

 Example Ohm's law: 

𝐼𝐼 =
𝑉𝑉
𝑅𝑅

 𝐼𝐼 is the current
 𝑉𝑉 is the voltage
 𝑅𝑅 is the resistance



 Have you ever used ampere-meter?

 Do you always get the same measurement?

 Is there a noise involved?







GPS navigation;

Voice and video transmission systems;

Communication over unreliable channels;

Compression of signals;

System reliability (system components fail randomly);

Resource-sharing systems (random demand);

Machine learning (visit 
https://www.kaggle.com/competitions);



 Inference is the process of collecting data and say something about the world.

 Data analysis is the process of curating, organizing and analyzing data sets to 
make inferences.

 Statistical Inference is the process of making inferences about population 
parameters (often never fully observed) based on observations collected as part of 
samples.

Example:

A certain smartphone manufacturer claims that

The battery lasts 2.3 days (on average).



 Buy all smartphones (say 𝑁𝑁 phones were produced)

 For each smartphone, measure and record its battery life 𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏𝑁𝑁
 Calculate the average battery life via

𝑏𝑏1 + 𝑏𝑏2 + ⋯+ 𝑏𝑏𝑁𝑁
𝑁𝑁



 Buy some small number of smartphones (say n ≪ 𝑁𝑁)

 For each smartphone, measure and record its battery life 𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏𝑛𝑛
 Estimate the average battery life via

𝑏𝑏1 + 𝑏𝑏2 + ⋯+ 𝑏𝑏𝑛𝑛
𝑛𝑛

 This number is called a statistic. 

 Statistic is just a quantity (a number) that we calculate from our sample.

 Sounds reasonable. 
 However, we want our estimations to be reliable. 
 How large 𝑛𝑛 should be? That is, what is the sample size?



 Mechanistic model is a model for which we understand the basic physical 
mechanism (like Ohm's law): 

𝐼𝐼 =
𝑉𝑉
𝑅𝑅

+ 𝜀𝜀
Here, 𝜀𝜀 is a random term added to the model to account for the fact that the observed 
values of current flow do not perfectly conform to the mechanistic model.

 Empirical models are used by engineers where were is no simple or well 
understood mechanistic model that explains the phenomenon. 



 Consider the smartphone battery life example. 

 We know that the battery life (𝐿𝐿) depends on the phone usage (𝑈𝑈) . That is, there 
exists a function 𝐿𝐿 = 𝑓𝑓 𝑈𝑈 .

 However, 𝑓𝑓 is unknown.

 We can try the first-order Taylor series expansion to achieve a (maybe) reasonable 
approximation. Namely,

𝐿𝐿 = 𝛽𝛽0 + 𝛽𝛽1⋅ 𝑈𝑈.

 Here, 𝛽𝛽0 and 𝛽𝛽1 are unknown parameters.

 In addition, we should account for other sources of variability (like a measurement 
error) by adding a random parameter 𝜀𝜀, and hence:

𝐿𝐿 = 𝛽𝛽0 + 𝛽𝛽1 ⋅ 𝑈𝑈 + 𝜀𝜀.



 We can now make an inference about the intercept (𝛽𝛽0) and slope (𝛽𝛽1), respectively.



 Stochastic Simulation is about generating random numbers.
 It might be not very clear now why one would like to do so, but you will have to trust me 

(for now).
 Suppose for example, that I would like to play the best paying slot machine. 
 I can try to observe several machines and perform some statistics.

 Alternatively, suppose that I am slot machine designer. 
 I am building  probabilistic model that specifies the likelihood of getting all kinds of 

winning combinations.
 Then, I can ask a computer to generate many “spins” based on my model.
 As soon as these spins are available, I can calculate many quantities of interest, such 

as
 What is the machine “payout” 
 How often a player “wins”



 Natural phenomena like atmospheric and white noise, or temperature, can be used 
for a generation of random numbers. These are expensive. 

 We would like to get random numbers using a computer. However, we have a few 
requirements.
 It should be robust and reliable.
 It should be fast.
 It should be reproducible. That is, one should be able to recover the stream without 

storing it in the memory. This property is important for testing.
 The period of the generator is the smallest number of steps taken before entering the 

previously visited state. A good generator should have a large period.
 It should be application dependent. For example, in cryptography, it is crucial that the 

generated sequence will be hard to predict.



 Pseudorandom number generators is an important field of study. 

 We will only care about it during this lecture. 

 All modern pseudorandom number generators are capable of producing a 
sequence 

𝑈𝑈1,𝑈𝑈2, … of “random” numbers such that 
1. 0 ≤ 𝑈𝑈𝑖𝑖 ≤ 1, and 
2. 𝑈𝑈1,𝑈𝑈2, … have a “sort of” uniform spread on the unit interval. 

 Such a uniform spread is called uniform distribution and is denoted by 𝐔𝐔(0,1)



 A general pseudorandom number generator will be of the following form:

 In order to create such a generator, we need the following.
 Specify an initial number (seed) for reproducibility; (this is 𝑋𝑋0).
 Define some appropriate functions 𝑓𝑓 and 𝑔𝑔.



 Define 𝑓𝑓 𝑋𝑋 = 𝑎𝑎𝑋𝑋 + 𝑐𝑐 mod 𝑚𝑚, and 𝑔𝑔 𝑋𝑋 = 𝑋𝑋/𝑚𝑚 for some constants 𝑎𝑎, 𝑐𝑐 and 𝑚𝑚.

 Let us set for example 𝑎𝑎 = 3, 𝑐𝑐 = 1, and 𝑚𝑚 = 10,000.

 Finally, set the seed 𝑋𝑋0 = 1.

 We can show that:
 𝑋𝑋1 = 4 ⇒ 𝑈𝑈1 = 4

10,000

 𝑋𝑋2 = 13 ⇒ 𝑈𝑈2 = 13
10,000



 Suppose that we would like to use such a generator to plot two-dimensional 
random uniform points. 

 The algorithm is simple, plot pairs 𝑈𝑈1,𝑈𝑈2 , 𝑈𝑈3,𝑈𝑈4 , …

 We expect to get:



 However, using 𝑎𝑎 = 3, 𝑐𝑐 = 1, and 𝑚𝑚 = 10,000, we get:

 Conclusion: 𝑎𝑎 = 3, 𝑐𝑐 = 1, and 𝑚𝑚 = 10,000 is a very bad choice! 



 Nevertheless, by using 𝑎𝑎 = 69069, 𝑐𝑐 = 1, and 𝑚𝑚 = 232, we get a nice spread.

 Conclusion: except of this lecture, we do not implement random generators! We use the 
ones that passed appropriate statistical tests!



 https://juliabox.com/up/uq/AJUF5NQ

 Comfortable web interface

https://juliabox.com/up/uq/AJUF5NQ


Cell types: Markdown and Code



Useful command: mark a cell and press "x" to delete it.



 Check JuliaReferenceSheet.pdf







 Suppose that we have some random numbers 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 .

 Let us sum them to get a new random number 𝑆𝑆𝑛𝑛 = 𝑋𝑋1 + 𝑋𝑋2 + ⋯+ 𝑋𝑋𝑛𝑛.

 Then, 𝑆𝑆𝑛𝑛 has a special spread (distribution), called a Gaussian distribution.
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