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UNIT 2 PROBABILITY AND MONTE CARLO

=The birthday problem

=Sample Space, Outcomes and Events
= Probability

Conditional Probability and Independence
The birthday problem and Monte Carlo




THE BIRTHDAY PROBLEM

prob same hirthday

For 23 people, the probability that someone share birthday is more than 50%!
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RANDOM EXPERIMENT

An experiment that can result in different outcomes, even though it is repeated in the
same manner every time, is called a random experiment. Some examples of random
experiments are:

= tossing a coin;

tossing a die;

counting the number of calls arriving at a Vodafone call center between 9am and 3pm;

select a ball from an urn containing white and black balls;

count the number of packets to arrive at a node in a communications network during a
one-minute period;

= the amount of snowfall in Moscow in February.

What are the ingredients of a random experiment?




THE SAMPLE SPACE

= Since random experiments do not consistently yield the same result, it is necessary
to determine the set of possible results.

= We define an outcome or sample point of a random experiment as a result that
cannot be decomposed into other results.

= When we perform a random experiment, one and only one outcome occurs. Thus
outcomes are mutually exclusive in the sense that they cannot occur imultaneously.

= The sample space S (or (1) of a random experiment is defined as the set of all
possible outcomes.




SAMPLE SPACE EXAMPLES

= Tossing a coin Q = {H,T}.
= Tossing a die Q = {1,2,3,4,5,6}.

= Counting the number of calls arriving at a Vodafone call center (between 9am and
3pm ) ) = N,where N =0,1,2, ...

= Select a ball from an urn containing white and black balls () = {W, B}.

= ] Count the number of packets to arrive at a node in a communications network
during a one-minute period) (0 = N.

= The amount of snowfall in Moscow in February ) () = R™.




TYPES OF SAMPLE SPACES

For historical (and didactic) reasons we often distinguish between two types of
sample spaces:

= A sample space is discrete if it consists of a finite or countable infinite set of
outcomes.

= A sample space is continuous if it contains an interval of real numbers, vectors or
similar objects.
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EVENTS

= Often we are not interested in a single outcome but in whether or not one of a
group of outcomes occurs. Such subsets of the sample space are called events.

= An event is any set of outcomes (any subset of the sample space ().
= Events are usually denoted by upper case letters, 4, B, C, et cetera.

= We say that event 4 occurs if the outcome of the experiment is one of the elements
in A.

= Two events of special interest are the certain event, (), which consists of all
outcomes and hence always occurs,

= and the impossible or null event, which contains no outcomes and hence never
occurs.




EXAMPLES OF EVENTS

= Suppose we select the natural numbers as the sample space,i.e. () = N .The
following are events:

= The outcome is even. A = {2,4,6, ... }.
= The outcome is less or equal than 4. B = {1,2,3,4}.

= The event that the sum of two dice is 10 or more:
E ={(4; 6),(5; 5),(5; 6),(6; 4),(6; 5),(6; 6)}

= E is the event that the lifetime of a plain engine is at least 400 hours: E = [400, o).

= Let E be the event that between 10000 and 20000 packets arrive in a one-minute
period: £ = [10000,10001,---,20000].




MORE EXAMPLES OF EVENTS

= Suppose that a coin is tossed 3 times, and that we “record” every head and tail (not
only the number of heads or tails). The sample space can then be written as

Q = {HHH,HHT, HTH, HTT, THH, THT, TTH, TTT}

where, for example, HTH means that the first toss is heads, the second tails, and the
third heads.

= An alternative sample space is the set {0,1}3of binary vectors of length 3, e.g., HTH
corresponds to (1,0, 1),and THH to (O, 1, 1).

= The event A that the third toss is headsis A = {HHH,THH,HTH,TTH}.




EVENTS ARE SETS, S0 WE CAN APPLY THE USUAL SET OPERATIONS TO EVENTS.

BASIC SET OPERATIONS - UNION

The set AU B (4 union B) is the event that A or B or both occur.




BASIC SET OPERATIONS - INTERSECTION

The set A N B (A intersection B) is the event that A and B both occur.




BASIC SET OPERATIONS - COMPLEMENT

The event A (A complement) is the event that A does not occur




BASIC SET OPERATIONS - SUBSETS

If A c B (Ais asubset of B) then event A is said to imply event B. Clearly this means
that if A occurs then B must occur.




BASIC SET OPERATIONS — DISJOINT SETS

Two events A and B which have no outcomes in common, thatis, A N B = @, are called
disjoint events.




VENN DIAGRAMS

Venn diagrams are used to illustrate events and the relationship between them

(complement, union, intersection, partition). They were popularized by John Venn
(1834-1923).

S

Fig 1. Venn diagram illustrating the relationship between three events, F', G and C.
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VENN DIAGRAMS
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Fig 3. The event (¢ is shaded




VENN DIAGRAMS




VENN DIAGRAMS

Fig 5. The event ' U (& is shaded
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THE DISTRIBUTIVE LAW FOR SET
0PERATIONS

(AUBYNC = (ANC)U (BN C),

(ANB)UC = (AUC)N(BU C)




VENN DIAGRAMS - EXAMPLE

= Let A and B be events. Find an expression for the event “exactly one of the events 4
and B occurs”.

In words: (A and not B) or (B and not A)

(AN BS) U (A° N B)

= Draw a Venn diagram for this event.




DEMORGAN'S LAWS

(AU B)® = A° N B°

(AN B)¢ = A° U B°




MORE EXAMPLES




NETWORK RELIABILITY (1)

= Consider three systems, each consisting of 3 unreliable components.

@@ O=0
Series w

Parallel

2-out-of-3

Three unreliable systems

= The series system works if and only if (abbreviated as iff) all components work; the
parallel system works if at least one of the components works; and the 2-out-of-3
system works if at least 2 out of 3 components work.

@



NETWORK RELIABILITY ()

Parallel

2-out-of-3

Three unreliable systems

Let A; be the event that the i-th component is functioning,i = 1,2,3;and let D,, Dy, D,

be the events that respectively the series, parallel and 2-out-of-3 system is
functioning.

D,=A1NANAs.
Dy, = A1 UA, UA;s.
D= (A1 NA)U(AINA3)U (AN Az).




PROBABILITY

Probability is used to quantify the likelihood, or chance, that an outcome of a random
experiment will occur.

= Recall that we discussed the sample space () (sometimes called S),
= and the set of events (subsets of (1). The events are denoted by F .

= The third and the final ingredient in the model for a random experiment is to seek
a “measure” which tells us how likely it is that a particular event will occur. This
measure is a function from events to probabilities.




PROBABILITY FORMAL DEFINITION

Definition:

A probability P: F — [0,1], is a rule (or function) which assigns a number between 0
and 1 to each event, and which satisfies the following axioms:

7. 0<P(A) <1lforanyeventAE€F.
2. P(Q)=1
3. If{A;} are disjoint, P(U 4;) = Y P(4;) .




SOME ADDITIONAL CONSEQUENCES

If P has the properties of a probability measure then automatically fulfils the
following:

. P(@) =0

2. IfAc BthenP(A) < P(B).

3. P(A°) =1 — P(A).

4 P(AU B)= P(A)+ P(B)— P(AN B).




PROOF OF 3. P(A“ ) = 1 — P(A)

Note that A and A€ are mutually exclusive, that is AN A = ().
From axiom 3: P(AUA°) = P(A) + P(A).
Since AU A = @ Axiom 2 yields

P(AU AS) = P(n) = 1 = P(A) + P(A°) = P(A) = 1 — P(A).




VENN DIAGRAM "PROOF" OF
P(AU B) = P(A) + P(B)— P(AN B)




DISCRETE SAMPLE SPACES

= Let () be a discrete sample space, e.g. () = {ay,a,,...ay}.

= The easiest way to specify a probability P on a discrete sample space is to specify
first the probability p; of each elementary event {a;} and then to define:

P(A) = Z p; for AcQ
i:a;€EA

This idea is represented in the figure below. To find the probability of the set A we

have to sum up the weights of all the elements in A.
()

- ———




THE EQUILIKELY PRINCIPLE

= It is up to the modeler to properly specify these probabilities p;.

= Fortunately, in many applications all elementary events are equally likely, and thus
the probability of each elementary event is equal to 1 divided by the total number
of elements in ().

= Specifically, If () has a finite number of outcomes, and all are equally likely, then the
probability of each event 4 is defined as

pay = A
Q2]




DISCRETE SAMPLE SPACES - EXAMPLE

= We draw two cards from a full deck of 52 cards (no jokers). What is the probability
of drawing at least one Ace? Draw the cards one by one. Each card has the same
probability to be drawn.

= Solution:
= |Q}] =52-51
= Let A be the event: “at least one Ace”. Then,
14l A
PA) = Q] 5251

= We need to count how many elements are in A, however, finding A€ is simpler.
Specifically, A° = 48 - 47, and therefore:

48 - 47
= —_ ¢ = —_ =~
P(A)=1-PA°) =1 =7 E1

0.15.




CONTINUOUS SAMPLE SPACES

= When the sample space is not countable, for example () = R, it is said to be
continuous.

= Example: We draw at random a point in the interval [0,1]. Each point is equally
likely to be drawn. How do we specify the model for this experiment?

= The sample space is obviously (2 = [0,1], which is a continuous sample space.

= We cannot define P via the elementary events {x}, x € [0,1] because each of these
events must have probability O!

= However, we can define P as follows:Foreach 0 <a < b < 1,let
P(a,b) =b—a

In particular, we can find the probability that the point falls into any a set A as the
length of that set.

L)



CONDITIONAL PROBABILITY

= How do probabilities change when we know some event B C () has occurred?

A

= Suppose B has occurred. Thus, we know that the outcome lies in B.

= Then, A will occur if and only if A N B occurs, and the relative chance of A occurring
is therefore P(AN B)/P(B) .

L)



CONDITIONAL PROBABILITY

= This leads to the definition of the conditional probability of A given B :

Example: We throw two dice. Given that the sum of the eyes is
10, what is the probability that one 6 is cast?
Let B be the event that the sum is 10, that is

B ={(4.6).(6,4),(5.5)}.

Let A be the event that one 6 is cast:
A={(6,1),(1,6),(6,2),(2,6),...,(6,5),(5,6)}.

In this case AN B = {(6,4),(4,6)}, and
P(ANB) 2/36 2

PAIB = BBy “3m 3

®




THE MULTIPLICATION RULE FOR
PROBABILITIES

P(A |B) = P(;l(g)B) = P(ANB) = P(A|B)P(B)

This can generalize this to n intersections of A; N 4, N ---N 4,, via:
P(Al NA; NN An) — P(Al)P(AZ |A1) P(An |A1,A2, v Ap-1)

Example: We draw consecutively 3 balls from a bowl with 5 white
and 5 black balls, without putting them back. What is the
probability that all balls will be black?

Solution: Let A; be the event that the ith ball is black. We wish
to find the probability of A;jA;As, which by the product rule

543

IP(A]_)P(AQ | Al)]P(Ag; | AQ, Al) = Eaé ~ 0.083.

®




THE LAW OF TOTAL PROBABILITY

= Suppose that B4, B, ..., B,, 1s a partition of ().

= From the third axiom of probability:
If {A;} are disjoint, P(U A4;) = ). P(4;)

P(A) = Z P(AN B,

= and by the multiplication rule:

P(A) =X P(AnB;) = X P(A|B)P(B;)







INDEPENDENCE

Two events are independent if any one of the following equivalent statements is true:

- P(A| B) = P(4)
- P(B | A) = P(B)
- P(AN B) = P(A)P(B)

The definition of independence can be extended to n events via
P(ANnA,n---NnA,)=T]P(4;)




INDEPENDENT AND MUTUALLY EXCLUSIVE
EVENTS — ARE NOT THE SAME!

= We toes a dice.
=LetA={2}and B ={6}.
= Clearly, A and B are mutually exclusive (I cannot get both 2 and 6).

= However, we know that given A, the probability of B happening is 0. That is,

P(AIB)=0¢P(A)=%,

= thatis, A and B are not independent.




BACK TO THE BIRTHDAY PROBLEM

= n = Number of students in class

= E = {Two or more shared birthdays}.

= P(E) =7

= It is easier to calculate P(E€) ,where E¢ = {No one has the same birthday}.

= Forn = 3,
|| = 365 - 365 - 365 = 3653, since for each student, we have 365 possibilities.

Now, the birthday of the first student is not important, however, the birthday of the second student
has only 365 — 1 = 364 possibilities (such that the match will not occur), similarly, the third
student is left with 365 — 2 = 363 possible placements. That is,

365 - 364 - 363

P(E?) = 3653




BACK TO THE BIRTHDAY PROBLEM

= For general n < 365, we have

P(E“) = P(No same birthday)

number outcomes without same birthday

number of possible birthday outcomes

~ 365-364-...-(365—n+1)
N 365"

~ 365!/(365 — n)!

N 365"




Exact Solution

In [1]: wusing Combinatorics, PyPlot
function sameBirthDayChance(n)
return 1 - factorial(365,365-n) / (365*n);
end
grid = 1:58
chances = []
for i=1:58
push!{chances, sameBirthDayChance(big(i}})
end|
chances
x¥label{"number of people in the room™)
ylabel{"prob same birthday™)
PyPlot.plot(grid,chances,”.");
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In [18]:  sameBirthDayChance(big(23))

Out[18]:

5.07297234323985407225417228337032500235971845292987809201974002001884183918127e-01




MONTE CARLO ANI
PROBLEM (1)

Monte Carlo

THE BIRTHDAY

In [26]: using StatsBase

function birthdayMonteCarlo(n)
# sample size
N = lecee
ell =[]

for i=1:N
# generate n uniform dates

datessample = sample(dates,n)
countUng = unigue(datessample)

if(size(datessample,1)»size(countUng,1))
push!({ell, 1)
else
push!{ell,a)
end
end

return mean(ell}
end

birthdayMonteCarlo(38)

Out[28]: 07072

e,




MONTE CARLO AND
PROBLEM (2)

In [21]: mcchances = []
for i=1:58

push!(mcchances, birthdayMonteCarlo(i))

end

THE BIRTHDAY

PyPlot.plot(grid,chances,”.",mcchances,"x");
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