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For 23 people, the probability that someone share birthday is more than 50%!



An experiment that can result in different outcomes, even though it is repeated in the 
same manner every time, is called a random experiment. Some examples of random 
experiments are:

 tossing a coin;

 tossing a die;

 counting the number of calls arriving at a Vodafone call center between 9am and 3pm;

 select a ball from an urn containing white and black balls;

 count the number of packets to arrive at a node in a communications network during a 
one-minute period;

 the amount of snowfall in Moscow in February.

What are the ingredients of a random experiment?



 Since random experiments do not consistently yield the same result, it is necessary 
to determine the set of possible results.

 We define an outcome or sample point of a random experiment as a result that 
cannot be decomposed into other results.

 When we perform a random experiment, one and only one outcome occurs. Thus 
outcomes are mutually exclusive in the sense that they cannot occur imultaneously.

 The sample space 𝑆𝑆 (or Ω) of a random experiment is defined as the set of all 
possible outcomes.



 Tossing a coin Ω = 𝐻𝐻,𝑇𝑇 .

 Tossing a die Ω = 1,2,3,4,5,6 .

 Counting the number of calls arriving at a Vodafone call center (between 9am and 
3pm ) Ω = N, where N = 0,1,2, …

 Select a ball from an urn containing white and black balls Ω = {W, B}.

 I Count the number of packets to arrive at a node in a communications network 
during a one-minute period) Ω = N.

 The amount of snowfall in Moscow in February ) Ω = R+.



For historical (and didactic) reasons we often distinguish between two types of 
sample spaces:

 A sample space is discrete if it consists of a finite or countable infinite set of 
outcomes.

 A sample space is continuous if it contains an interval of real numbers, vectors or 
similar objects.



 Often we are not interested in a single outcome but in whether or not one of a 
group of outcomes occurs. Such subsets of the sample space are called events.

 An event is any set of outcomes (any subset of the sample space Ω).

 Events are usually denoted by upper case letters, 𝐴𝐴,𝐵𝐵,𝐶𝐶, et cetera.

 We say that event 𝐴𝐴 occurs if the outcome of the experiment is one of the elements 
in 𝐴𝐴.

 Two events of special interest are the certain event, Ω, which consists of all 
outcomes and hence always occurs,

 and the impossible or null event, which contains no outcomes and hence never 
occurs.



 Suppose we select the natural numbers as the sample space, i.e. Ω = 𝑁𝑁 . The 
following are events:
 The outcome is even. 𝐴𝐴 = {2,4,6, … }.
 The outcome is less or equal than 4. 𝐵𝐵 = {1,2,3,4}.

 The event that the sum of two dice is 10 or more:
𝐸𝐸 = 4; 6 , 5; 5 , 5; 6 , 6; 4 , 6; 5 , 6; 6

 𝐸𝐸 is the event that the lifetime of a plain engine is at least 400 hours: 𝐸𝐸 = [400,∞).

 Let 𝐸𝐸 be the event that between 10000 and 20000 packets arrive in a one-minute 
period: 𝐸𝐸 = 10000, 10001,⋯ , 20000 .



 Suppose that a coin is tossed 3 times, and that we “record” every head and tail (not 
only the number of heads or tails). The sample space can then be written as

Ω = HHH, HHT, HTH, HTT, THH, THT, TTH, TTT

where, for example, HTH means that the first toss is heads, the second tails, and the 
third heads.

 An alternative sample space is the set 0,1 3of binary vectors of length 3, e.g., HTH 
corresponds to (1, 0, 1), and THH to (0, 1, 1).

 The event 𝐴𝐴 that the third toss is heads is 𝐴𝐴 = 𝐻𝐻𝐻𝐻𝐻𝐻,𝑇𝑇𝐻𝐻𝐻𝐻,𝐻𝐻𝑇𝑇𝐻𝐻,𝑇𝑇𝑇𝑇𝐻𝐻 .



The set 𝐴𝐴 ∪ 𝐵𝐵 (𝐴𝐴 union 𝐵𝐵) is the event that 𝐴𝐴 or 𝐵𝐵 or both occur.



The set 𝐴𝐴 ∩ 𝐵𝐵 (𝐴𝐴 intersection 𝐵𝐵) is the event that 𝐴𝐴 and 𝐵𝐵 both occur.



The event 𝐴𝐴𝑐𝑐 (𝐴𝐴 complement) is the event that 𝐴𝐴 does not occur. 



If 𝐴𝐴 ⊂ 𝐵𝐵 (𝐴𝐴 is a subset of 𝐵𝐵) then event 𝐴𝐴 is said to imply event 𝐵𝐵. Clearly this means 
that if 𝐴𝐴 occurs then 𝐵𝐵 must occur.



Two events 𝐴𝐴 and 𝐵𝐵 which have no outcomes in common, that is, 𝐴𝐴 ∩ 𝐵𝐵 = ∅, are called 
disjoint events.



Venn diagrams are used to illustrate events and the relationship between them 
(complement, union, intersection, partition). They were popularized by John Venn 
(1834-1923).

















 Let 𝐴𝐴 and 𝐵𝐵 be events. Find an expression for the event “exactly one of the events 𝐴𝐴
and 𝐵𝐵 occurs”.

In words: (𝐴𝐴 and not 𝐵𝐵) or (𝐵𝐵 and not 𝐴𝐴)

 Draw a Venn diagram for this event.







 Consider three systems, each consisting of 3 unreliable components.

 The series system works if and only if (abbreviated as iff) all components work; the 
parallel system works if at least one of the components works; and the 2-out-of-3 
system works if at least 2 out of 3 components work.



Let 𝐴𝐴𝑖𝑖 be the event that the i-th component is functioning, 𝑖𝑖 = 1, 2, 3; and let 𝐷𝐷𝑎𝑎,𝐷𝐷𝑏𝑏,𝐷𝐷𝑐𝑐
be the events that respectively the series, parallel and 2-out-of-3 system is 
functioning.



Probability is used to quantify the likelihood, or chance, that an outcome of a random 
experiment will occur.

 Recall that we discussed the sample space Ω (sometimes called 𝑆𝑆),

 and the set of events (subsets of Ω). The events are denoted by 𝐹𝐹 .

 The third and the final ingredient in the model for a random experiment is to seek 
a “measure” which tells us how likely it is that a particular event will occur. This 
measure is a function from events to probabilities.



Definition:

A probability 𝑃𝑃:𝐹𝐹 → [0,1], is a rule (or function) which assigns a number between 0 
and 1 to each event, and which satisfies the following axioms:

1. 0 ≤ 𝑃𝑃 𝐴𝐴 ≤ 1 for any event 𝐴𝐴 ∈ 𝐹𝐹.

2. 𝑃𝑃 Ω = 1

3. If {𝐴𝐴𝑖𝑖} are disjoint, 𝑃𝑃 ∪ 𝐴𝐴𝑖𝑖 = ∑𝑃𝑃(𝐴𝐴𝑖𝑖) .



If 𝑃𝑃 has the properties of a probability measure then automatically fulfils the 
following:

1. 𝑃𝑃 ∅ = 0

2. If 𝐴𝐴 ⊂ 𝐵𝐵 then 𝑃𝑃 𝐴𝐴 ≤ 𝑃𝑃(𝐵𝐵).

3. 𝑃𝑃 𝐴𝐴𝑐𝑐 = 1 − 𝑃𝑃 𝐴𝐴 .

4. 𝑃𝑃 𝐴𝐴 ∪ 𝐵𝐵 = 𝑃𝑃 𝐴𝐴 + 𝑃𝑃 𝐵𝐵 − 𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵).







 Let Ω be a discrete sample space, e.g. Ω = {a1, a2, … an}.

 The easiest way to specify a probability 𝑃𝑃 on a discrete sample space is to specify 
first the probability 𝑝𝑝𝑖𝑖 of each elementary event 𝑎𝑎𝑖𝑖 and then to define: 

𝑃𝑃 𝐴𝐴 = �
𝑖𝑖:𝑎𝑎𝑖𝑖∈𝐴𝐴

𝑝𝑝𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓 𝐴𝐴 ⊂ Ω

This idea is represented in the figure below. To find the probability of the set 𝐴𝐴 we 
have to sum up the weights of all the elements in 𝐴𝐴.



 It is up to the modeler to properly specify these probabilities 𝑝𝑝𝑖𝑖.

 Fortunately, in many applications all elementary events are equally likely, and thus 
the probability of each elementary event is equal to 1 divided by the total number 
of elements in Ω.

 Specifically, If Ω has a finite number of outcomes, and all are equally likely, then the 
probability of each event 𝐴𝐴 is defined as

𝑃𝑃 𝐴𝐴 =
|𝐴𝐴|
|Ω|



 We draw two cards from a full deck of 52 cards (no jokers). What is the probability 
of drawing at least one Ace? Draw the cards one by one. Each card has the same 
probability to be drawn.

 Solution:
 Ω = 52 ⋅ 51
 Let 𝐴𝐴 be the event: “at least one Ace”. Then, 

𝑃𝑃 𝐴𝐴 =
|𝐴𝐴|
|Ω|

=
|𝐴𝐴|

52 ⋅ 51

 We need to count how many elements are in 𝐴𝐴, however, finding 𝐴𝐴𝑐𝑐 is simpler. 
Specifically, 𝐴𝐴𝑐𝑐 = 48 ⋅ 47, and therefore:

𝑃𝑃 𝐴𝐴 = 1 − 𝑃𝑃 𝐴𝐴𝑐𝑐 = 1 −
48 ⋅ 47
52 ⋅ 51

≈ 0.15.



 When the sample space is not countable, for example Ω = 𝑅𝑅, it is said to be 
continuous.

 Example: We draw at random a point in the interval [0,1]. Each point is equally 
likely to be drawn. How do we specify the model for this experiment?

 The sample space is obviously Ω = [0,1], which is a continuous sample space.

 We cannot define 𝑃𝑃 via the elementary events 𝑥𝑥 , 𝑥𝑥 ∈ [0,1] because each of these 
events must have probability 0!

 However, we can define 𝑃𝑃 as follows: For each 0 ≤ 𝑎𝑎 ≤ 𝑏𝑏 ≤ 1, let

𝑃𝑃 𝑎𝑎, 𝑏𝑏 = 𝑏𝑏 − 𝑎𝑎

In particular, we can find the probability that the point falls into any a set 𝐴𝐴 as the 
length of that set.



 How do probabilities change when we know some event 𝐵𝐵 ⊂ Ω has occurred?

 Suppose 𝐵𝐵 has occurred. Thus, we know that the outcome lies in 𝐵𝐵.

 Then, 𝐴𝐴 will occur if and only if 𝐴𝐴 ∩ 𝐵𝐵 occurs, and the relative chance of A occurring 
is therefore P(𝐴𝐴 ∩ 𝐵𝐵)/𝑃𝑃(𝐵𝐵) .



 This leads to the definition of the conditional probability of 𝐴𝐴 given 𝐵𝐵 :



𝑃𝑃 𝐴𝐴 𝐵𝐵) =
P(𝐴𝐴 ∩ 𝐵𝐵)
𝑃𝑃(𝐵𝐵)

⇒ P 𝐴𝐴 ∩ 𝐵𝐵 = 𝑃𝑃 𝐴𝐴 𝐵𝐵)𝑃𝑃 𝐵𝐵

This can generalize this to n intersections of 𝐴𝐴1 ∩ 𝐴𝐴2 ∩ ⋯∩ 𝐴𝐴𝑛𝑛 via:

𝑃𝑃 𝐴𝐴1 ∩ 𝐴𝐴2 ∩⋯∩ 𝐴𝐴𝑛𝑛 = 𝑃𝑃 𝐴𝐴1 𝑃𝑃 𝐴𝐴2 𝐴𝐴1) ⋯𝑃𝑃 𝐴𝐴𝑛𝑛 𝐴𝐴1,𝐴𝐴2, … ,𝐴𝐴𝑛𝑛−1)



 Suppose that 𝐵𝐵1,𝐵𝐵2, … ,𝐵𝐵𝑛𝑛 is a partition of Ω.

 From the third axiom of probability:

If {𝐴𝐴𝑖𝑖} are disjoint, 𝑃𝑃 ∪ 𝐴𝐴𝑖𝑖 = ∑𝑃𝑃(𝐴𝐴𝑖𝑖)

𝑃𝑃 𝐴𝐴 = �𝑃𝑃 𝐴𝐴 ∩ 𝐵𝐵𝑖𝑖

 and by the multiplication rule:

𝑃𝑃 𝐴𝐴 = ∑𝑃𝑃 𝐴𝐴 ∩ 𝐵𝐵𝑖𝑖 = ∑𝑃𝑃 𝐴𝐴 𝐵𝐵𝑖𝑖)𝑃𝑃 𝐵𝐵𝑖𝑖





Two events are independent if any one of the following equivalent statements is true:

 𝑃𝑃 𝐴𝐴 | 𝐵𝐵 = 𝑃𝑃 𝐴𝐴

 𝑃𝑃 𝐵𝐵 | 𝐴𝐴 = 𝑃𝑃 𝐵𝐵

 𝑃𝑃 𝐴𝐴 ∩ 𝐵𝐵 = 𝑃𝑃 𝐴𝐴 𝑃𝑃 𝐵𝐵

The definition of independence can be extended to n events via

𝑃𝑃 𝐴𝐴1 ∩ 𝐴𝐴2 ∩⋯∩ 𝐴𝐴𝑛𝑛 = ∏𝑃𝑃 𝐴𝐴𝑖𝑖



 We toes a dice.

 Let 𝐴𝐴 = { 2 } and 𝐵𝐵 = 6 .

 Clearly, 𝐴𝐴 and 𝐵𝐵 are mutually exclusive (I cannot get both 2 and 6). 

 However, we know that given 𝐴𝐴, the probability of 𝐵𝐵 happening is 0. That is,

𝑃𝑃 𝐴𝐴 ∣ 𝐵𝐵 = 0 ≠ 𝑃𝑃 𝐴𝐴 = 1
6

,

 that is, 𝐴𝐴 and 𝐵𝐵 are not independent.



 𝑛𝑛 = Number of students in class

 𝐸𝐸 = 𝑇𝑇𝑇𝑇𝑓𝑓 𝑓𝑓𝑓𝑓 𝑚𝑚𝑓𝑓𝑓𝑓𝑚𝑚 𝑠𝑠𝑠𝑎𝑎𝑓𝑓𝑚𝑚𝑠𝑠 𝑏𝑏𝑖𝑖𝑓𝑓𝑏𝑏𝑠𝑠𝑠𝑎𝑎𝑏𝑏𝑠𝑠 .

 𝑃𝑃(𝐸𝐸) =?

 It is easier to calculate 𝑃𝑃(𝐸𝐸𝑐𝑐) , where 𝐸𝐸𝑐𝑐 = No one has the same birthday .
 For 𝑛𝑛 = 3,

Ω = 365 ⋅ 365 ⋅ 365 = 3653, since for each student, we have 365 possibilities.
Now, the birthday of the first student is not important, however, the birthday of the second student 
has only 365 − 1 = 364 possibilities (such that the match will not occur), similarly, the third 
student is left with 365 − 2 = 363 possible placements. That is, 

𝑃𝑃 𝐸𝐸𝑐𝑐 =
365 ⋅ 364 ⋅ 363

3653



 For general 𝑛𝑛 ≤ 365, we have
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