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Joint Distributions (1)

Many random experiments involve not just one, but multiple
random variables.

Examples.

We randomly select a person from a large population and
measure his/her weight X and height Y.

We shoot at a two-dimensional target. Let X and Y be the
coordinates of the point of impact.

We randomly select 20 people from a large population and ask
their preference for a political party. Number the people from
1 to 20, and let Xi,..., X5p be the measurements.



Joint Distributions (2)

How can we specify a model for the experiments above?

We cannot just specify the pdf or pmf of the individual
random variables.

We also need to specify the “interaction;; between the
random variables. E.g., in Example 1, if the height Y is large,
we expect that X is large as well.

We need to specify the joint distribution of all the random
variables Xi,..., X, involved in the experiment.

Alternatively, we need to specify the distribution of the
random vector X := (Xi,..., Xy).

We first show how this works for pairs of random variables.



Joint pmf

We will write P(X = x, Y = y) for the probability of the event
{X=x}n{Y =y}

Definition

Let (X, Y) be a discrete random vector. The function

(x,y) = P(X = x,Y = y) is called the joint probability mass
function of X and Y.

Example.

In a box are three dice. Die 1 is a normal die; die 2 has no 6
face, but instead two 5 faces; die 3 has no 5 face, but instead
two 6 faces.

The experiment consists of selecting a die at random, followed
by a toss with that die.

Let X be the die number that is selected, and let Y be the
face value of that die. The joint pmf of X and Y is specified
over.



Joint and Marginal pmfs
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The pmf’'s of X and Y, the so-called marginal pmf’s, can be
found by summing up over respectively the y’'s and the x's, e.g.,

PX=x)=)» P(X=xY=y)



Joint pmf

Let Qx y be the set of possible outcomes of (X, Y). We have for
all B C Qx’y,

P(X,Y)eB)= Y PX=x,Y=y).
(x,y)eB

An important way of creating joint pmfs is by starting with
the marginal pmfs of X and Y and then to define the events
{X = x} and {Y = y} to be independent, for all x and y.
We then have (definition of independent events)

PX=x,Y=y)=P(X =x)P(Y =y).

Example.
Repeat the experiment above with three normal dice. Since
the events {X = x} and {Y = y} should be independent,
each entry in the pmf table is 1/3 x 1/6.
Clearly in the first experiment not all events {X = x} and
{Y = y} are independent (why not?).



Joint pdf
The analogue of the pmf for continuous X and Y is the joint pdf.

Definition

We say that the random variables X and Y have a joint probability
density function f if, for all events {(X, Y) € A}, where A is a
subset of R? (the plane), we have

P((X, Y)EA)://Af(x,y)dxdy.

We often write fx y for f.

Note that the calculation of probabilities has been reduced to
integration over a set A.



Bivariate normal distribution

We say that Z; and Z, have a bi-variate Gaussian (or normal)
distribution with parameters p1, uo, 03,03 and p if the joint
density function is given by
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Bivariate normal distribution
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Properties (1)
The joint pdf has the following properties (similar to the
1-dimensional case):
f(x,y) >0, for all x and y.

2[5 f(x,y)dxdy = 1.

Any function f satisfying these conditions, and for which the
integral is well-defined, can be a joint pdf.

f(x,y) can be interpreted as the “infinitesimal” probability
that X =xand Y = y:

Px < X<x+hy<Y<y+h=

x+h py+h
:/ / f(u,v)dudv =~ h*f(x,y).
x y



Properties (2)

We can obtain the marginal pdf of X, say fx, by integrating f
over all y:

fx(x) = / f(x,y)dy.
Similar for Y.
Finally, we can define the joint cdf.

Let X and Y be two random variables observed from the
same random experiment.

We define the joint cumulative distribution function as
Flx,y) =P(X < x,Y < ).

If X and Y are continuous random variables, the joint pdf is

then
2

f(Xv.y) =

yF(X,y)-



Independence

Independence. Let X and Y be two random variables.

Definition
We say X and Y are independent random variables if any event
defined by X is independent of every event defined by Y.

That is, if X and Y are independent, we can always say that
Pla< X <bin{c<Y <d})=Pla< X<b)P(c <Y <d)

for any possible choice of a, b, ¢ and d.

It follows that X and Y are independent if and only if

Fx.y(x,y) = Fx(x) Fy(y).



Independence

Hence, for continuous random variables, X and Y are
independent if and only if, for all x and v,

fx,y (xy) = fx(x) v (¥)-

For discrete random variables, X and Y are independent if
and only if, for all x and y,

PX=x,Y=y)=P(X =x)P(Y =y).



Independence

Example. We draw at random a point (X, Y) from the 16 points
on the square E below.
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Clearly X and Y are independent.



Conditional distributions

Example. We draw at random a point (X, Y') from the 10 points
on the triangle D below.




Conditional distributions

The joint and marginal pmfs are easy to determine:
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Conditional distributions

Clearly X and Y are not independent;
1 32
PX=2Y=2)=—# —— =
( ’ ) 10 7 1010
In fact, if we know that X = 2, then Y can only take the
values j = 2,3 or 4.
The corresponding probabilities are
P(X=2,Y=j) 1/10 1

Py =j1X=2)= P(X=2)  3/10 3

We thus have determined the conditional pmf of Y given
X =2.



Conditional distributions

Definition
If X and Y are discrete and P(X = x) > 0, then

P(X=x,Y =y)
P(X = x)

P(Y=y|X=x)=
for all y, give the conditional pmf of Y given X = x.

We can extend this to general Y:
Definition
If X is discrete and P(X = x) > 0, then

P(X=x,Y <y)
P(X =x)

Fr(Y=y|X=x)=B(Y <y|X=x)=

gives the conditional cdf of Y given X = x.



Conditional distributions

The corresponding density (if it exists) is the conditional pdf
of Y given X = x, denoted

fr(y | x).

The corresponding density is called the conditional pdf of Y
given X = x:
fX,Y(Xa y)

fY(y | X) = fX(X)



Conditional expectation

For discrete X and Y, P(Y =y | X = x) is a genuine pmf, for
each fixed x.
Hence, we can assign to it an expectation:

E[Y [ X]=) yP(Y=y|X=x).
y

Similarly, in the continuous case we can define

BLY [X]= [ yfuly |0 dy.

This number E[Y | X] is called the conditional expectation
of Y given X = x.



Multiple Random Variables

Suppose X1, X, ..., X, are random variables pertaining to
some random experiment. The joint cdf F is defined by

F(X17X27"'7Xn) :P(Xl SX17X2 SX27"' 7Xn SXI‘I)

which completely specifies the probability distribution of the
vector (X1, X2, ..., Xy).

If the X;'s are discrete, it suffices to only know the joint pmf
p, defined by

p(x1, ... xn) =P(X1 = x1,...,Xp = xpn).



Multiple Random Variables

Similarly, when the X;'s are continuous the probability
distribution is completely specified by the joint pdf f (if it
exists):
8”F(x1 e Xn)

f(x,... = — =7
(X17 ’Xn) 8x1 s 8Xn
Integration of f over a subset A of R” gives the probability
that the vector (X1, X2, ..., X,) lies in A.



Independence

Discrete random variables Xi, Xo, ..., X, are said to be
independent if, for all x1, x2, ..., x,,

P(X1 = x1,...,Xn = xp) = P(X1 = x1) P(X2 = x2) - - - P(X, = xp).

Similarly, for continuous random variables with a joint density
function f, independence is equivalent to

(X1, xn) = fx,(x1) - - fx, (Xn)-

An infinite sequence Xi, Xo, ... of random variables is called
independent if for any finite choice of parameters i1, i, ..., ip
(none of them the same), the random variables X, ..., Xi,

are independent.



Important remarks

More often than not, the independence of random variables is
a model assumption, rather than a consequence.

Instead of describing a random experiment via an explicit
description of Q and P, we will usually model the experiment
through one or more (independent) random variables.



Functions of random variables

Suppose Xi, ..., X, are the measurements on a random
experiment. Often we are interested in functions of the
measurement. Examples are:

Xi,...,X, are repeated measurements of a certain quantity.

Then,
X1+ X0+ 4+ X,

n

is what we are really interested in.

X1,...,X, are the lifetimes of the components in a series
system. Then, the lifetime of the system is

min{Xy,..., Xy}.

In general, let the random variable Z be defined as a function of
several random variables: Z = g(Xi, ..., X,). How can we find the
pmf, pdf and/or cdf of Z7?



Expected value

Similar to the 1-dimensional case, the expected value of
Z = g(Xi,...,Xp) can be evaluated in the discrete case as

E[Z] Z ngb -y X (lexla"'vxn:XnL

and, in the continuous case as

E[Z]:/ / g(xt, ...y xn)f(x1, ..., xn)dxg - dx.

Example

In the continuous case, find the expectation of X + Y. (Do the
discrete case yourself.)



Expected value (linearity of expectation)
Let f be the joint pdf of X and Y/, then

E[X + Y] = /oo /Oo (x + y)F(x, y)dxdy =

/ / f(x,y dxdy+/ / yf(x,y)dxdy =

:/ x fx(x )dx+/ y fy(y)dy = E[X] + E[Y].

Note that X and Y do not have to be independent.



Expected value

This is easily generalized to the following result:

Suppose Xi,..., X, are random variables measured on the
same random experiment, with means u1,..., tn.

Let Y =a+ b1 Xy + b Xo+ -+ by X, where a, by, ..., b, are
constants.

Then,

E[Y] =El[a+ b1 X1 + boXo + - - + by X,] =
=a+ biE[X1] + - bE[Xp] = a+ pu1 + by - - + bppin.

That is, substitute the mean for each X.

Another important result is as follows. If Xi,..., X, are
independent, then

E[X1 Xz - - - Xp] = B[XE[Xa] - - - E[X,].



Correlation

Definition
The covariance of two random variables X and Y is defined as the

number
cov(X,Y) :=E[X —E[X])(Y —E[Y]).

Basically, it is a measure for the amount of linear dependency
between the variables.

Closely related to this is the correlation of X and Y, defined as
B cov(X,Y)
V/Var(X)/Var(Y)

p(X,Y)

The covariance (and correlation) of two independent random
variables is 0.



Properties of Variance and Covariance

Var(X) = E[X?] — (B[X]).

Var(aX + b) = a? Var(X).

ov(X,Y) =E[XY] - E[X]E[Y].

ov(X,Y) = cov(Y, X).

cov(aX + bY,Z) = acov(X,Z)+ beov(Y, 2).
cov(X, X) = Var(X)

Var(X + Y) = Var(X) + Var(Y) + 2cov(X, Y).
X and Y independent = cov(X,Y) = 0.

Q

Q

As an immediate consequence, if Xi,..., X, are independent, we
have

Var(Y) = Var(a+ b1 X1 + bpXo + -+ - + bpXp) =
= b3 Var(Xy) + - - + b2 Var(X,).



Jointly Gaussian RVs

The n-dimensional density of the random vector
X=(Xg,....,X)"

(column vector), with Xi, ..., X, independent and standard
normal, is .

fx(x) = (2m)"2e 2 %,

We consider now the function (transformation) Z = pu + BX.
The pdf of Z is

fo(2) = ) T ),

- V@n)E]

where ¥ = BBT.

Z is said to have a multi-variate Gaussian (or normal)
distribution with expectation vector p and covariance
matrix X.



Jointly Gaussian RVs

)T, and

Example. Consider the 2-dimensional case with p = (1, 2

B—< o1 0>
poioy 02)°

The covariance matrix is now

sy — BBT — of  po1o2
pPO102 0’% ’

Therefore, the density is

1

X
2no1024/1 — p?

_ 2 _ _ _ 2
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fz(Z) = fz(zl,ZQ) =

This is the pdf of the bi-variate Gaussian distribution, which we
encountered earlier.



Jointly Gaussian RVs
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Jointly Gaussian RVs
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Jointly Gaussian RVs




Jointly Gaussian RVs

A very important property of the normal distribution is for
independent
X;NN(,LL,',O‘,?), izl,...,n.

Specifically, the random variable

is distributed

N (a—l—ibiu;,ib?(f,?) .
i=1

i=1



Jointly Gaussian RVs

Example A machine produces ball bearings with a N(1,0.01)
diameter (cm). The balls are placed on a sieve with a N(1.1,0.04)
diameter. The diameter of the balls and the sieve are assumed to
be independent of each other. What is the probability that a ball

will fall through?

Solution
Let X ~ N(1,0.01) and Y ~ N(1.1,0.04).
We need to calculate P(Y > X) =P(Y — X > 0).
But, T :=Y — X ~ N(0.1,0.05). Hence,

IF)(T>0):P<y_x 0.1 )

- >0
v0.05 +/0.05

0.1
=P|{Z>—-——=] =1—-9(0.447) = 0.67.
< \/0.05) ( )



