STAT2201

Analysis of Engineering \& Scientific Data

Unit 4

Slava Vaisman

The University of Queensland School of Mathematics and Physics

Joint Distributions (1)

Many random experiments involve not just one, but multiple random variables.

Examples.

1. We randomly select a person from a large population and measure his/her weight X and height Y.
2. We shoot at a two-dimensional target. Let X and Y be the coordinates of the point of impact.
3. We randomly select 20 people from a large population and ask their preference for a political party. Number the people from 1 to 20 , and let X_{1}, \ldots, X_{20} be the measurements.

Joint Distributions (2)

- How can we specify a model for the experiments above?
- We cannot just specify the pdf or pmf of the individual random variables.
- We also need to specify the "interaction;; between the random variables. E.g., in Example 1, if the height Y is large, we expect that X is large as well.
- We need to specify the joint distribution of all the random variables X_{1}, \ldots, X_{n} involved in the experiment.
- Alternatively, we need to specify the distribution of the random vector $X:=\left(X_{1}, \ldots, X_{n}\right)$.
- We first show how this works for pairs of random variables.

Joint pmf

We will write $\mathbb{P}(X=x, Y=y)$ for the probability of the event $\{X=x\} \cap\{Y=y\}$.

Definition

Let (X, Y) be a discrete random vector. The function $(x, y) \rightarrow \mathbb{P}(X=x, Y=y)$ is called the joint probability mass function of X and Y.

Example.

- In a box are three dice. Die 1 is a normal die; die 2 has no 6 face, but instead two 5 faces; die 3 has no 5 face, but instead two 6 faces.
- The experiment consists of selecting a die at random, followed by a toss with that die.
- Let X be the die number that is selected, and let Y be the face value of that die. The joint pmf of X and Y is specified over.

Joint and Marginal pmfs

y	1	2	3	4	5	6	\sum
	1	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{18}$
	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{9}$	0	$\frac{1}{3}$
	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{18}$	0	$\frac{1}{9}$	$\frac{1}{3}$
	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	1

The pmf's of X and Y, the so-called marginal pmf's, can be found by summing up over respectively the y 's and the x 's, e.g.,

$$
\mathbb{P}(X=x)=\sum_{y} \mathbb{P}(X=x, Y=y)
$$

Joint pmf

Let $\Omega_{X, Y}$ be the set of possible outcomes of (X, Y). We have for all $B \subset \Omega_{X, Y}$,

$$
\mathbb{P}((X, Y) \in B)=\sum_{(x, y) \in B} \mathbb{P}(X=x, Y=y)
$$

- An important way of creating joint pmfs is by starting with the marginal pmfs of X and Y and then to define the events $\{X=x\}$ and $\{Y=y\}$ to be independent, for all x and y.
- We then have (definition of independent events)

$$
\mathbb{P}(X=x, Y=y)=\mathbb{P}(X=x) \mathbb{P}(Y=y)
$$

Example.

- Repeat the experiment above with three normal dice. Since the events $\{X=x\}$ and $\{Y=y\}$ should be independent, each entry in the pmf table is $1 / 3 \times 1 / 6$.
- Clearly in the first experiment not all events $\{X=x\}$ and $\{Y=y\}$ are independent (why not?).

Joint pdf

The analogue of the pmf for continuous X and Y is the joint pdf.

Definition

We say that the random variables X and Y have a joint probability density function f if, for all events $\{(X, Y) \in A\}$, where A is a subset of \mathbb{R}^{2} (the plane), we have

$$
\mathbb{P}((X, Y) \in A)=\iint_{A} f(x, y) \mathrm{d} x \mathrm{~d} y
$$

- We often write $f_{X, Y}$ for f.
- Note that the calculation of probabilities has been reduced to integration over a set A.

Bivariate normal distribution

We say that Z_{1} and Z_{2} have a bi-variate Gaussian (or normal) distribution with parameters $\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}$ and ρ if the joint density function is given by

$$
\begin{aligned}
f\left(z_{1}, z_{2}\right) & =\frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} \times \\
& \times\left\{\exp \frac{\left(z_{1}-\mu_{1}\right)^{2}}{\sigma_{1}^{2}}-2 \rho \frac{\left(z_{1}-\mu_{1}\right)\left(z_{2}-\mu_{2}\right)}{\sigma_{1} \sigma_{2}}+\frac{\left(z_{2}-\mu_{2}\right)^{2}}{\sigma_{2}^{2}}\right\}
\end{aligned}
$$

Bivariate normal distribution

Properties (1)

The joint pdf has the following properties (similar to the 1-dimensional case):

1. $f(x, y) \geq 0$, for all x and y.
2. $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \mathrm{d} x \mathrm{~d} y=1$.

- Any function f satisfying these conditions, and for which the integral is well-defined, can be a joint pdf.
- $f(x, y)$ can be interpreted as the "infinitesimal" probability that $X=x$ and $Y=y$:

$$
\begin{aligned}
\mathbb{P}(x & \leq X \leq x+h, y \leq Y \leq y+h)= \\
& =\int_{x}^{x+h} \int_{y}^{y+h} f(u, v) \mathrm{d} u \mathrm{~d} v \approx h^{2} f(x, y) .
\end{aligned}
$$

Properties (2)

- We can obtain the marginal pdf of X, say f_{X}, by integrating f over all y :

$$
f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) \mathrm{d} y
$$

- Similar for Y.
- Finally, we can define the joint cdf.
- Let X and Y be two random variables observed from the same random experiment.
- We define the joint cumulative distribution function as $F(x, y)=\mathbb{P}(X \leq x, Y \leq y)$.
- If X and Y are continuous random variables, the joint pdf is then

$$
f(x, y)=\frac{\partial^{2}}{\partial x \partial y} F(x, y)
$$

Independence

- Independence. Let X and Y be two random variables.

Definition

We say X and Y are independent random variables if any event defined by X is independent of every event defined by Y.

- That is, if X and Y are independent, we can always say that

$$
\mathbb{P}(\{a<X \leq b\} \cap\{c<Y \leq d\})=\mathbb{P}(a<X \leq b) \mathbb{P}(c<Y \leq d)
$$

for any possible choice of a, b, c and d.

- It follows that X and Y are independent if and only if

$$
F_{X, Y}(x, y)=F_{X}(x) F_{Y}(y)
$$

Independence

- Hence, for continuous random variables, X and Y are independent if and only if, for all x and y,

$$
f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)
$$

- For discrete random variables, X and Y are independent if and only if, for all x and y,

$$
\mathbb{P}(X=x, Y=y)=\mathbb{P}(X=x) \mathbb{P}(Y=y)
$$

Independence

Example. We draw at random a point (X, Y) from the 16 points on the square E below.

Clearly X and Y are independent.

Conditional distributions

Example. We draw at random a point (X, Y) from the 10 points on the triangle D below.

Conditional distributions

The joint and marginal pmfs are easy to determine:

$$
\mathbb{P}(X=i, Y=j)=\frac{1}{10}, \quad(i, j) \in D
$$

and,

$$
\begin{aligned}
& \mathbb{P}(X=i)=\frac{5-i}{10}, \quad i \in\{1,2,3,4\} \\
& \mathbb{P}(Y=j)=\frac{j}{10}, \quad j \in\{1,2,3,4\}
\end{aligned}
$$

Conditional distributions

- Clearly X and Y are not independent;

$$
\mathbb{P}(X=2, Y=2)=\frac{1}{10} \neq \frac{3}{10} \frac{2}{10}=\mathbb{P}(X=2) \mathbb{P}(Y=2)
$$

- In fact, if we know that $X=2$, then Y can only take the values $j=2,3$ or 4 .
- The corresponding probabilities are

$$
\mathbb{P}(Y=j \mid X=2)=\frac{\mathbb{P}(X=2, Y=j)}{\mathbb{P}(X=2)}=\frac{1 / 10}{3 / 10}=\frac{1}{3}
$$

- We thus have determined the conditional pmf of Y given $X=2$.

Conditional distributions

Definition

If X and Y are discrete and $\mathbb{P}(X=x)>0$, then

$$
\mathbb{P}(Y=y \mid X=x)=\frac{\mathbb{P}(X=x, Y=y)}{\mathbb{P}(X=x)}
$$

for all y, give the conditional pmf of Y given $X=x$.

We can extend this to general Y :

Definition

If X is discrete and $\mathbb{P}(X=x)>0$, then

$$
F_{Y}(Y=y \mid X=x)=\mathbb{P}(Y \leq y \mid X=x)=\frac{\mathbb{P}(X=x, Y \leq y)}{\mathbb{P}(X=x)}
$$

gives the conditional cdf of Y given $X=x$.

Conditional distributions

- The corresponding density (if it exists) is the conditional pdf of Y given $X=x$, denoted

$$
f_{Y}(y \mid x)
$$

- The corresponding density is called the conditional pdf of Y given $X=x$:

$$
f_{Y}(y \mid x)=\frac{f_{X, Y}(x, y)}{f_{X}(x)}
$$

Conditional expectation

- For discrete X and $Y, \mathbb{P}(Y=y \mid X=x)$ is a genuine pmf, for each fixed x.
- Hence, we can assign to it an expectation:

$$
\mathbb{E}[Y \mid X]=\sum_{y} y \mathbb{P}(Y=y \mid X=x)
$$

- Similarly, in the continuous case we can define

$$
\mathbb{E}[Y \mid X]=\int_{y} y f_{Y}(y \mid x) \mathrm{d} y
$$

- This number $\mathbb{E}[Y \mid X]$ is called the conditional expectation of Y given $X=x$.

Multiple Random Variables

- Suppose $X_{1}, X_{2}, \ldots, X_{n}$ are random variables pertaining to some random experiment. The joint cdf F is defined by

$$
F\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\mathbb{P}\left(X_{1} \leq x_{1}, X_{2} \leq x_{2}, \cdots, X_{n} \leq x_{n}\right)
$$

- which completely specifies the probability distribution of the vector $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$.
- If the X_{i} 's are discrete, it suffices to only know the joint pmf p, defined by

$$
p\left(x_{1}, \ldots, x_{n}\right)=\mathbb{P}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)
$$

Multiple Random Variables

- Similarly, when the X_{i} 's are continuous the probability distribution is completely specified by the joint pdf f (if it exists):

$$
f\left(x_{1}, \ldots, x_{n}\right)=\frac{\partial^{n} F\left(x_{1}, \ldots, x_{n}\right)}{\partial x_{1} \cdots \partial x_{n}}
$$

- Integration of f over a subset A of \mathbb{R}^{n} gives the probability that the vector $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ lies in A.

Independence

- Discrete random variables $X_{1}, X_{2}, \ldots, X_{n}$ are said to be independent if, for all $x_{1}, x_{2}, \ldots, x_{n}$,

$$
\mathbb{P}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)=\mathbb{P}\left(X_{1}=x_{1}\right) \cdot \mathbb{P}\left(X_{2}=x_{2}\right) \cdots \mathbb{P}\left(X_{n}=x_{n}\right)
$$

- Similarly, for continuous random variables with a joint density function f, independence is equivalent to

$$
f\left(x_{1}, \ldots, x_{n}\right)=f_{X_{1}}\left(x_{1}\right) \cdots f_{X_{n}}\left(x_{n}\right)
$$

- An infinite sequence X_{1}, X_{2}, \ldots of random variables is called independent if for any finite choice of parameters $i_{1}, i_{2}, \ldots, i_{n}$ (none of them the same), the random variables $X_{i_{1}}, \ldots, X_{i_{n}}$ are independent.

Important remarks

- More often than not, the independence of random variables is a model assumption, rather than a consequence.
- Instead of describing a random experiment via an explicit description of Ω and \mathbb{P}, we will usually model the experiment through one or more (independent) random variables.

Functions of random variables

Suppose X_{1}, \ldots, X_{n} are the measurements on a random experiment. Often we are interested in functions of the measurement. Examples are:

1. X_{1}, \ldots, X_{n} are repeated measurements of a certain quantity. Then,

$$
\frac{X_{1}+X_{2}+\cdots+X_{n}}{n}
$$

is what we are really interested in.
2. X_{1}, \ldots, X_{n} are the lifetimes of the components in a series system. Then, the lifetime of the system is

$$
\min \left\{X_{1}, \ldots, X_{n}\right\}
$$

In general, let the random variable Z be defined as a function of several random variables: $Z=g\left(X_{1}, \ldots, X_{n}\right)$. How can we find the pmf, pdf and/or cdf of Z ?

Expected value

- Similar to the 1-dimensional case, the expected value of $Z=g\left(X_{1}, \ldots, X_{n}\right)$ can be evaluated in the discrete case as

$$
\mathbb{E}[Z]=\sum_{x_{1}} \cdots \sum_{x_{n}} g\left(x_{1}, \ldots, x_{n}\right) \mathbb{P}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right),
$$

- and, in the continuous case as

$$
\mathbb{E}[Z]=\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} g\left(x_{1}, \ldots, x_{n}\right) f\left(x_{1}, \ldots, x_{n}\right) \mathrm{d} x_{1} \cdots \mathrm{~d} x_{n}
$$

Example

In the continuous case, find the expectation of $X+Y$. (Do the discrete case yourself.)

Expected value (linearity of expectation)

Let f be the joint pdf of X and Y, then

$$
\begin{aligned}
\mathbb{E}[X+Y] & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}(x+y) f(x, y) \mathrm{d} x \mathrm{~d} y= \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f(x, y) \mathrm{d} x \mathrm{~d} y+\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f(x, y) \mathrm{d} x \mathrm{~d} y= \\
& =\int_{-\infty}^{\infty} x f_{X}(x) \mathrm{d} x+\int_{-\infty}^{\infty} y f_{Y}(y) \mathrm{d} y=\mathbb{E}[X]+\mathbb{E}[Y]
\end{aligned}
$$

Note that X and Y do not have to be independent.

Expected value

- This is easily generalized to the following result:
- Suppose X_{1}, \ldots, X_{n} are random variables measured on the same random experiment, with means μ_{1}, \ldots, μ_{n}.
- Let $Y=a+b_{1} X_{1}+b_{2} X_{2}+\cdots+b_{n} X_{n}$ where a, b_{1}, \ldots, b_{n} are constants.
- Then,

$$
\begin{aligned}
\mathbb{E}[Y] & =\mathbb{E}\left[a+b_{1} X_{1}+b_{2} X_{2}+\cdots+b_{n} X_{n}\right]= \\
& =a+b_{1} \mathbb{E}\left[X_{1}\right]+\cdots b_{n} \mathbb{E}\left[X_{n}\right]=a+\mu_{1}+b_{1} \cdots+b_{n} \mu_{n}
\end{aligned}
$$

- That is, substitute the mean for each X.
- Another important result is as follows. If X_{1}, \ldots, X_{n} are independent, then

$$
\mathbb{E}\left[X_{1} X_{2} \cdots X_{n}\right]=\mathbb{E}\left[X_{1}\right] \mathbb{E}\left[X_{2}\right] \cdots \mathbb{E}\left[X_{n}\right]
$$

Correlation

Definition

The covariance of two random variables X and Y is defined as the number

$$
\operatorname{cov}(X, Y):=\mathbb{E}[X-\mathbb{E}[X])(Y-\mathbb{E}[Y])
$$

Basically, it is a measure for the amount of linear dependency between the variables.

Closely related to this is the correlation of X and Y, defined as

$$
\rho(X, Y)=\frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{Var}(X)} \sqrt{\operatorname{Var}(Y)}}
$$

The covariance (and correlation) of two independent random variables is 0 .

Properties of Variance and Covariance

$-\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2}$.

- $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$.
$\Rightarrow \operatorname{cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]$.
- $\operatorname{cov}(X, Y)=\operatorname{cov}(Y, X)$.
- $\operatorname{cov}(a X+b Y, Z)=a \operatorname{cov}(X, Z)+b \operatorname{cov}(Y, Z)$.
- $\operatorname{cov}(X, X)=\operatorname{Var}(X)$
- $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{cov}(X, Y)$.
- X and Y independent $\Rightarrow \operatorname{cov}(X, Y)=0$.

As an immediate consequence, if X_{1}, \ldots, X_{n} are independent, we have

$$
\begin{aligned}
\operatorname{Var}(Y) & =\operatorname{Var}\left(a+b_{1} X_{1}+b_{2} X_{2}+\cdots+b_{n} X_{n}\right)= \\
& =b_{1}^{2} \operatorname{Var}\left(X_{1}\right)+\cdots+b_{n}^{2} \operatorname{Var}\left(X_{n}\right)
\end{aligned}
$$

Jointly Gaussian RVs

- The n-dimensional density of the random vector

$$
\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)^{\top}
$$

(column vector), with X_{1}, \ldots, X_{n} independent and standard normal, is

$$
f_{X}(x)=(2 \pi)^{-\frac{n}{2}} e^{-\frac{1}{2} \mathbf{x}^{\top} \mathbf{x}}
$$

- We consider now the function (transformation) $Z=\boldsymbol{\mu}+B \mathbf{X}$. The pdf of Z is

$$
f_{\mathbf{Z}}(z)=\frac{1}{\sqrt{(2 \pi)^{n}|\Sigma|}} \mathrm{e}^{-\frac{1}{2}(\mathrm{x}-\mu)^{\top} \Sigma^{-1}(\mathrm{x}-\mu)}
$$

where $\Sigma=B B^{\top}$.

- Z is said to have a multi-variate Gaussian (or normal) distribution with expectation vector $\boldsymbol{\mu}$ and covariance matrix Σ.

Jointly Gaussian RVs

Example. Consider the 2-dimensional case with $\boldsymbol{\mu}=\left(\mu_{1}, \mu_{2}\right)^{\top}$, and

$$
B=\left(\begin{array}{cc}
\sigma_{1} & 0 \\
\rho \sigma_{1} \sigma_{2} & \sigma_{2}
\end{array}\right) .
$$

The covariance matrix is now

$$
\Sigma=B B^{\top}=\left(\begin{array}{cc}
\sigma_{1}^{2} & \rho \sigma_{1} \sigma_{2} \\
\rho \sigma_{1} \sigma_{2} & \sigma_{2}^{2}
\end{array}\right)
$$

Therefore, the density is

$$
\begin{aligned}
f_{\boldsymbol{Z}}(\boldsymbol{z}) & =f_{\boldsymbol{Z}}\left(z_{1}, z_{2}\right)=\frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} \times \\
& \times\left\{\exp \frac{\left(z_{1}-\mu_{1}\right)^{2}}{\sigma_{1}^{2}}-2 \rho \frac{\left(z_{1}-\mu_{1}\right)\left(z_{2}-\mu_{2}\right)}{\sigma_{1} \sigma_{2}}+\frac{\left(z_{2}-\mu_{2}\right)^{2}}{\sigma_{2}^{2}}\right\}
\end{aligned}
$$

This is the pdf of the bi-variate Gaussian distribution, which we encountered earlier.

Jointly Gaussian RVs

Jointly Gaussian RVs

Jointly Gaussian RVs

Jointly Gaussian RVs

A very important property of the normal distribution is for independent

$$
X_{i} \sim \mathrm{~N}\left(\mu_{i}, \sigma_{i}^{2}\right), \quad i=1, \ldots, n
$$

Specifically, the random variable

$$
Y=a+\sum_{i=1}^{n} b_{i} X_{i}
$$

is distributed

$$
\mathrm{N}\left(a+\sum_{i=1}^{n} b_{i} \mu_{i}, \sum_{i=1}^{n} b_{i}^{2} \sigma_{i}^{2}\right) .
$$

Jointly Gaussian RVs

Example A machine produces ball bearings with a $\mathrm{N}(1,0.01)$ diameter (cm). The balls are placed on a sieve with a $N(1.1,0.04)$ diameter. The diameter of the balls and the sieve are assumed to be independent of each other. What is the probability that a ball will fall through?

Solution

- Let $X \sim \mathrm{~N}(1,0.01)$ and $Y \sim \mathrm{~N}(1.1,0.04)$.
- We need to calculate $\mathbb{P}(Y>X)=\mathbb{P}(Y-X>0)$.
- But, $T:=Y-X \sim \mathrm{~N}(0.1,0.05)$. Hence,

$$
\begin{aligned}
\mathbb{P}(T>0) & =\mathbb{P}\left(\frac{Y-X}{\sqrt{0.05}}-\frac{0.1}{\sqrt{0.05}}>0\right) \\
& =\mathbb{P}\left(Z>-\frac{0.1}{\sqrt{0.05}}\right)=1-\Phi(0.447) \approx 0.67
\end{aligned}
$$

