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Joint Distributions (1)

Many random experiments involve not just one, but multiple
random variables.

Examples.

1. We randomly select a person from a large population and
measure his/her weight X and height Y .

2. We shoot at a two-dimensional target. Let X and Y be the
coordinates of the point of impact.

3. We randomly select 20 people from a large population and ask
their preference for a political party. Number the people from
1 to 20, and let X1, . . . ,X20 be the measurements.



Joint Distributions (2)

I How can we specify a model for the experiments above?

I We cannot just specify the pdf or pmf of the individual
random variables.

I We also need to specify the “interaction;; between the
random variables. E.g., in Example 1, if the height Y is large,
we expect that X is large as well.

I We need to specify the joint distribution of all the random
variables X1, . . . ,Xn involved in the experiment.

I Alternatively, we need to specify the distribution of the
random vector X := (X1, . . . ,Xn).

I We first show how this works for pairs of random variables.



Joint pmf

We will write P(X = x ,Y = y) for the probability of the event
{X = x} ∩ {Y = y}.

Definition
Let (X ,Y ) be a discrete random vector. The function
(x , y)→ P(X = x ,Y = y) is called the joint probability mass
function of X and Y .

Example.

I In a box are three dice. Die 1 is a normal die; die 2 has no 6
face, but instead two 5 faces; die 3 has no 5 face, but instead
two 6 faces.

I The experiment consists of selecting a die at random, followed
by a toss with that die.

I Let X be the die number that is selected, and let Y be the
face value of that die. The joint pmf of X and Y is specified
over.



Joint and Marginal pmfs

The pmf’s of X and Y , the so-called marginal pmf’s, can be
found by summing up over respectively the y ’s and the x ’s, e.g.,

P(X = x) =
∑
y

P(X = x ,Y = y).



Joint pmf

Let ΩX ,Y be the set of possible outcomes of (X ,Y ). We have for
all B ⊂ ΩX ,Y ,

P((X ,Y ) ∈ B) =
∑

(x ,y)∈B

P(X = x ,Y = y).

I An important way of creating joint pmfs is by starting with
the marginal pmfs of X and Y and then to define the events
{X = x} and {Y = y} to be independent, for all x and y .

I We then have (definition of independent events)

P(X = x ,Y = y) = P(X = x)P(Y = y).

Example.
I Repeat the experiment above with three normal dice. Since

the events {X = x} and {Y = y} should be independent,
each entry in the pmf table is 1/3× 1/6.

I Clearly in the first experiment not all events {X = x} and
{Y = y} are independent (why not?).



Joint pdf

The analogue of the pmf for continuous X and Y is the joint pdf.

Definition
We say that the random variables X and Y have a joint probability
density function f if, for all events {(X ,Y ) ∈ A}, where A is a
subset of R2 (the plane), we have

P((X ,Y ) ∈ A) =

∫ ∫
A
f (x , y)dx dy .

I We often write fX ,Y for f .

I Note that the calculation of probabilities has been reduced to
integration over a set A.



Bivariate normal distribution

We say that Z1 and Z2 have a bi-variate Gaussian (or normal)
distribution with parameters µ1, µ2, σ

2
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2
2 and ρ if the joint

density function is given by

f (z1, z2) =
1

2πσ1σ2

√
1− ρ2

×

×
{
exp

(z1 − µ1)2

σ2
1

− 2ρ
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+

(z2 − µ2)2

σ2
2

}



Bivariate normal distribution



Properties (1)

The joint pdf has the following properties (similar to the
1-dimensional case):

1. f (x , y) ≥ 0, for all x and y .

2.
∫∞
−∞

∫∞
−∞ f (x , y) dx dy = 1.

I Any function f satisfying these conditions, and for which the
integral is well-defined, can be a joint pdf.

I f (x , y) can be interpreted as the “infinitesimal” probability
that X = x and Y = y :

P(x ≤ X ≤ x + h, y ≤ Y ≤ y + h) =

=

∫ x+h

x

∫ y+h

y
f (u, v)du dv ≈ h2f (x , y).



Properties (2)

I We can obtain the marginal pdf of X , say fX , by integrating f
over all y :

fX (x) =

∫ ∞
−∞

f (x , y) dy .

I Similar for Y .

I Finally, we can define the joint cdf.

I Let X and Y be two random variables observed from the
same random experiment.

I We define the joint cumulative distribution function as
F (x , y) = P(X ≤ x ,Y ≤ y).

I If X and Y are continuous random variables, the joint pdf is
then

f (x , y) =
∂2

∂x∂y
F (x , y).



Independence

I Independence. Let X and Y be two random variables.

Definition
We say X and Y are independent random variables if any event
defined by X is independent of every event defined by Y .

I That is, if X and Y are independent, we can always say that

P({a < X ≤ b}∩{c < Y ≤ d}) = P(a < X ≤ b)P(c < Y ≤ d)

for any possible choice of a, b, c and d .

I It follows that X and Y are independent if and only if

FX ,Y (x , y) = FX (x)FY (y).



Independence

I Hence, for continuous random variables, X and Y are
independent if and only if, for all x and y ,

fX ,Y (x , y) = fX (x) fY (y).

I For discrete random variables, X and Y are independent if
and only if, for all x and y ,

P(X = x ,Y = y) = P(X = x)P(Y = y).



Independence

Example. We draw at random a point (X ,Y ) from the 16 points
on the square E below.

Clearly X and Y are independent.



Conditional distributions

Example. We draw at random a point (X ,Y ) from the 10 points
on the triangle D below.



Conditional distributions

The joint and marginal pmfs are easy to determine:

P(X = i ,Y = j) =
1

10
, (i , j) ∈ D.

and,

P(X = i) =
5− i

10
, i ∈ {1, 2, 3, 4},

P(Y = j) =
j

10
, j ∈ {1, 2, 3, 4}.



Conditional distributions

I Clearly X and Y are not independent;

P(X = 2,Y = 2) =
1

10
6= 3

10

2

10
= P(X = 2)P(Y = 2).

I In fact, if we know that X = 2, then Y can only take the
values j = 2, 3 or 4.

I The corresponding probabilities are

P(Y = j | X = 2) =
P(X = 2,Y = j)

P(X = 2)
=

1/10

3/10
=

1

3
.

I We thus have determined the conditional pmf of Y given
X = 2.



Conditional distributions

Definition
If X and Y are discrete and P(X = x) > 0, then

P(Y = y | X = x) =
P(X = x ,Y = y)

P(X = x)

for all y , give the conditional pmf of Y given X = x .

We can extend this to general Y :

Definition
If X is discrete and P(X = x) > 0, then

FY (Y = y | X = x) = P(Y ≤ y | X = x) =
P(X = x ,Y ≤ y)

P(X = x)
,

gives the conditional cdf of Y given X = x .



Conditional distributions

I The corresponding density (if it exists) is the conditional pdf
of Y given X = x , denoted

fY (y | x).

I The corresponding density is called the conditional pdf of Y
given X = x :

fY (y | x) =
fX ,Y (x , y)

fX (x)
.



Conditional expectation

I For discrete X and Y , P(Y = y | X = x) is a genuine pmf, for
each fixed x .

I Hence, we can assign to it an expectation:

E[Y | X ] =
∑
y

y P(Y = y | X = x).

I Similarly, in the continuous case we can define

E[Y | X ] =

∫
y
y fY (y | x)dy .

I This number E[Y | X ] is called the conditional expectation
of Y given X = x .



Multiple Random Variables

I Suppose X1,X2, . . . ,Xn are random variables pertaining to
some random experiment. The joint cdf F is defined by

F (x1, x2, . . . , xn) = P(X1 ≤ x1,X2 ≤ x2, · · · ,Xn ≤ xn).

I which completely specifies the probability distribution of the
vector (X1,X2, . . . ,Xn).

I If the Xi ’s are discrete, it suffices to only know the joint pmf
p, defined by

p(x1, . . . , xn) = P(X1 = x1, . . . ,Xn = xn).



Multiple Random Variables

I Similarly, when the Xi ’s are continuous the probability
distribution is completely specified by the joint pdf f (if it
exists):

f (x1, . . . , xn) =
∂nF (x1, . . . , xn)

∂x1 · · · ∂xn
.

I Integration of f over a subset A of Rn gives the probability
that the vector (X1,X2, . . . ,Xn) lies in A.



Independence

I Discrete random variables X1,X2, . . . ,Xn are said to be
independent if, for all x1, x2, . . . , xn,

P(X1 = x1, . . . ,Xn = xn) = P(X1 = x1)·P(X2 = x2) · · ·P(Xn = xn).

I Similarly, for continuous random variables with a joint density
function f , independence is equivalent to

f (x1, . . . , xn) = fX1(x1) · · · fXn(xn).

I An infinite sequence X1,X2, . . . of random variables is called
independent if for any finite choice of parameters i1, i2, . . . , in
(none of them the same), the random variables Xi1 , . . . ,Xin

are independent.



Important remarks

I More often than not, the independence of random variables is
a model assumption, rather than a consequence.

I Instead of describing a random experiment via an explicit
description of Ω and P, we will usually model the experiment
through one or more (independent) random variables.



Functions of random variables

Suppose X1, . . . ,Xn are the measurements on a random
experiment. Often we are interested in functions of the
measurement. Examples are:

1. X1, . . . ,Xn are repeated measurements of a certain quantity.
Then,

X1 + X2 + · · ·+ Xn

n

is what we are really interested in.

2. X1, . . . ,Xn are the lifetimes of the components in a series
system. Then, the lifetime of the system is

min{X1, . . . ,Xn}.

In general, let the random variable Z be defined as a function of
several random variables: Z = g(X1, . . . ,Xn). How can we find the
pmf, pdf and/or cdf of Z?



Expected value

I Similar to the 1-dimensional case, the expected value of
Z = g(X1, . . . ,Xn) can be evaluated in the discrete case as

E[Z ] =
∑
x1

· · ·
∑
xn

g(x1, . . . , xn)P(X1 = x1, . . . ,Xn = xn),

I and, in the continuous case as

E[Z ] =

∫ ∞
−∞
· · ·
∫ ∞
−∞

g(x1, . . . , xn)f (x1, . . . , xn)dx1 · · · dxn.

Example

In the continuous case, find the expectation of X + Y . (Do the
discrete case yourself.)



Expected value (linearity of expectation)

Let f be the joint pdf of X and Y , then

E[X + Y ] =

∫ ∞
−∞

∫ ∞
−∞

(x + y)f (x , y)dx dy =

=

∫ ∞
−∞

∫ ∞
−∞

xf (x , y)dx dy +

∫ ∞
−∞

∫ ∞
−∞

yf (x , y)dx dy =

=

∫ ∞
−∞

x fX (x)dx +

∫ ∞
−∞

y fY (y)dy = E[X ] + E[Y ].

Note that X and Y do not have to be independent.



Expected value

I This is easily generalized to the following result:

I Suppose X1, . . . ,Xn are random variables measured on the
same random experiment, with means µ1, . . . , µn.

I Let Y = a + b1X1 + b2X2 + · · ·+ bnXn where a, b1, . . . , bn are
constants.

I Then,

E[Y ] = E[a + b1X1 + b2X2 + · · ·+ bnXn] =

= a + b1E[X1] + · · · bnE[Xn] = a + µ1 + b1 · · ·+ bnµn.

I That is, substitute the mean for each X .

I Another important result is as follows. If X1, . . . ,Xn are
independent, then

E[X1X2 · · ·Xn] = E[X1]E[X2] · · ·E[Xn].



Correlation

Definition
The covariance of two random variables X and Y is defined as the
number

cov(X ,Y ) := E[X − E[X ]) (Y − E[Y ]).

Basically, it is a measure for the amount of linear dependency
between the variables.

Closely related to this is the correlation of X and Y , defined as

ρ(X ,Y ) =
cov(X ,Y )√

Var(X )
√
Var(Y )

.

The covariance (and correlation) of two independent random
variables is 0.



Properties of Variance and Covariance

I Var(X ) = E[X 2]− (E[X ])2.

I Var(aX + b) = a2 Var(X ).

I cov(X ,Y ) = E[XY ]− E[X ]E[Y ].

I cov(X ,Y ) = cov(Y ,X ).

I cov(aX + bY ,Z ) = a cov(X ,Z ) + b cov(Y ,Z ).

I cov(X ,X ) = Var(X )

I Var(X + Y ) = Var(X ) + Var(Y ) + 2 cov(X ,Y ).

I X and Y independent ⇒ cov(X ,Y ) = 0.

As an immediate consequence, if X1, . . . ,Xn are independent, we
have

Var(Y ) = Var(a + b1X1 + b2X2 + · · ·+ bnXn) =

= b2
1 Var(X1) + · · ·+ b2

n Var(Xn).



Jointly Gaussian RVs

I The n-dimensional density of the random vector

X = (X1, . . . ,Xn)>

(column vector), with X1, . . . ,Xn independent and standard
normal, is

fX (x) = (2π)−
n
2 e−

1
2
x>x.

I We consider now the function (transformation) Z = µ + BX.
The pdf of Z is

fZ(z) =
1√

(2π)n|Σ|
e−

1
2

(x−µ)>Σ−1(x−µ),

where Σ = BB>.

I Z is said to have a multi-variate Gaussian (or normal)
distribution with expectation vector µ and covariance
matrix Σ.



Jointly Gaussian RVs

Example. Consider the 2-dimensional case with µ = (µ1, µ2)>, and

B =

(
σ1 0

ρσ1σ2 σ2

)
.

The covariance matrix is now

Σ = BB> =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
.

Therefore, the density is

fZ (z) = fZ (z1, z2) =
1

2πσ1σ2

√
1− ρ2

×

×
{
exp

(z1 − µ1)2

σ2
1

− 2ρ
(z1 − µ1)(z2 − µ2)

σ1σ2
+

(z2 − µ2)2

σ2
2

}
This is the pdf of the bi-variate Gaussian distribution, which we
encountered earlier.



Jointly Gaussian RVs



Jointly Gaussian RVs



Jointly Gaussian RVs



Jointly Gaussian RVs

A very important property of the normal distribution is for
independent

Xi ∼ N(µi , σ
2
i ), i = 1, . . . , n.

Specifically, the random variable

Y = a +
n∑

i=1

bi Xi ,

is distributed

N

(
a +

n∑
i=1

bi µi ,
n∑

i=1

b2
i σ

2
i

)
.



Jointly Gaussian RVs

Example A machine produces ball bearings with a N(1, 0.01)
diameter (cm). The balls are placed on a sieve with a N(1.1, 0.04)
diameter. The diameter of the balls and the sieve are assumed to
be independent of each other. What is the probability that a ball

will fall through?

Solution

I Let X ∼ N(1, 0.01) and Y ∼ N(1.1, 0.04).

I We need to calculate P(Y > X ) = P(Y − X > 0).

I But, T := Y − X ∼ N(0.1, 0.05). Hence,

P(T > 0) = P
(
Y − X√

0.05
− 0.1√

0.05
> 0

)
= P

(
Z > − 0.1√

0.05

)
= 1− Φ(0.447) ≈ 0.67.


