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Statistical inference

I Let X1, . . . ,Xn ∼ F (x) be a data drawn randomly from some
unknown distribution F .

I Assume that the data is independent and identically
distributed (i.i.d).

1. Xi ∼ F (x) for all 1 ≤ i ≤ n
2. Xi s are independent

I Statistical Inference is the process of forming judgements
about the parameters



A statistic (1)

I A statistic is any function of the observations in a random
sample. Examples:

g(X1,X2, . . . ,Xn) = X =
X1 + X2 + · · ·+ Xn

n

g(X1,X2, . . . ,Xn) = max{X1,X2, . . . ,Xn}

I More examples.

I Sample variance and sample standard deviation
I Sample quantiles besides the median, (quartiles and

percentiles)
I Order statistics
I Sample moments and functions



A statistic (2)

I The probability distribution of a statistic is called the
sampling distribution.

I Note that g(X1,X2, . . . ,Xn) is also a random variable!

I A point estimate of some population parameter θ is a single
numerical value θ̂ of a statistic Θ̂ = g(X1,X2, . . . ,Xn).

I The statistic Θ̂ is called the point estimator.

I The most common statistic we consider is the sample mean,
X , with a given value denoted by x . As an estimator, the
sample mean is an estimator of the population mean, µ.



Normal, or Gaussian, Distribution

The normal (or Gaussian) distribution is the most important
distribution in the study of statistics, engineering, and biology.

We say that a random variable has a normal distribution with
parameters µ and σ2 if its density function f is given by

f (x) =
1

σ
√

2π
e−

1
2( x−µ

σ )
2

, x ∈ R.

I We write X ∼ N(µ, σ2).

I The parameters µ and σ2 turn out to be the expectation and
variance of the distribution, respectively.

I If µ = 0 and σ = 1 then

f (x) =
1√
2π

e−
1
2
x2 , x ∈ R,

and the distribution is known as a standard normal
distribution.



Properties of Normal Distribution

I If X ∼ N(µ, σ2), then

X − µ
σ

∼ N(0, 1).

Thus by subtracting the mean and dividing by the standard
deviation we obtain a standard normal distribution. This
procedure is called standardization.

I Standardization enables us to express the cdf of any normal
distribution in terms of the cdf of the standard normal
distribution.

I A trivial rewriting of the standardization formula gives the
following important result: If X ∼ N(µ, σ2), then

X = µ+ σZ , Z ∼ N(0, 1).

I In other words, any Gaussian (normal) random variable can be
viewed as a so-called affine (linear + constant) transformation
of a standard normal random variable.



Normal Distribution



Sums of independent Random Variables

I The (probably most) celebrated theorem in probability: the
Central Limit Theorem (CLT).

I Suppose, for example, that we weigh 20 randomly selected
people. The average weight of the group is

ŵ =
X1 + · · ·+ X20

20
.

I In general, let
X1,X2, . . . ,Xn

be independent and identically distributed random variables.

I For each n, let
Sn = X1 + · · ·+ Xn.

I Let E[Xi ] = µ and Var(Xi ) = σ2 (assuming that these are
finite).

I Note that E[Sn] = nµ, and Var(Sn) = nσ2.



Central Limit Theorem

The Central Limit Theorem states roughly that:

“The sum of a large number of iid random variables has
approximately a Gaussian distribution.”

More precisely, it states that, for all x ,

P
(
Sn − nµ√

nσ
≤ x

)
= Φ(x).

where Φ is the cdf of the standard normal distribution.

Regardless of Xi ’s distribution, the sum behaves (approxi-
mately) as the Gaussian random variable!

Let us see the amazing CLT in action.



Central Limit Theorem

The next picture shows the pdf’s of S1, . . . ,S4 for the case where
the Xi have a U[0, 1] distribution.



Central Limit Theorem for the mean

I Let X = Sn
n .

I E[X ] = µ

I Var
(
X
)

= σ2

n

I Therefore,

P

(
X − µ

σ√
n

≤ x

)
= Φ(x).



Central Limit Theorem — summary

1. For the sum of i.i.d random variables Sn:

Sn ∼ N
(
nµ, nσ2

)
.

2. For the mean of i.i.d random variables X :

X ∼ N

(
µ,
σ2

n

)
.



The standard error of X

I The standard error of X is given by σ
√
n.

I Note that In most practical situations σ is not known but
rather estimated.

I The estimated standard error (SE) is:

s =

√∑n
i=1 (xi − x)2

n − 1
=

√∑n
i=1 x

2
i − nx2

n − 1

I If X ∼ N(0, 1), the probability that X is between 0± 1 is
about 0.68.

I What about X ∼ N(µ, σ2)?



Knowing the sampling distribution

Knowing the sampling distribution (or the approximate sampling
distribution) of a statistic is the key for the two main tools of
statistical inference that we study:

1. Confidence intervals — a method for yielding error bounds on
point estimates.

2. Hypothesis testing — a methodology for making conclusions
about population parameters.



Confidence intervals



The confidence interval

I A confidence interval estimate for µ (the real mean), is an
interval of the form

l ≤ µ ≤ u,

where the end-points l and u l and u are computed from the
sample data X1, . . . ,Xn.

I When we collect data, we can observe different X1, . . . ,Xn, so
these endpoints are values of random variables L and U,
respectively.

I Suppose that

P(L ≤ µ ≤ U) = 1− α, α ∈ (0, 1).

I Then, the resulting confidence interval for µ is l ≤ µ ≤ u, and
the end-points or bounds l and u are called the lower- and
upper-confidence limits (bounds), respectively, and 1− α is
called the confidence level.



The confidence interval — intuition

I Suppose:
P(L ≤ µ ≤ U) = 1− α.

I Consider the following statements. What is your intuition
about the α.

1. “The average height in this class is between -10kg and
8000 kg”

2. “The average height in this class is between 70kg and 72 kg”



The confidence interval for the mean (1)

I Recall that we know the sampling distribution of the mean:

X ∼ N

(
µ,
σ2

n

)
.

I That is, for some positive scalar value z1−α/2, we have

P
(
X ≤ µ+ z1−α/2

σ√
n

)
= P

(
X − µ

σ√
n

≤ z1−α/2

)
= Φ(z1−α/2)

P
(
X ≤ µ− z1−α/2

σ√
n

)
= P

(
X − µ

σ√
n

≤ −z1−α/2

)
= Φ(−z1−α/2) = 1− Φ(z1−α/2)



The confidence interval for the mean (2)

I From these equations, we have

P
(
µ− z1−α/2

σ√
n
≤ X ≤ µ+ z1−α/2

σ√
n

)
= P

(
X − z1−α/2

σ√
n
≤ µ ≤ X + z1−α/2

σ√
n

)
= Φ(z1−α/2)− (1− Φ(z1−α/2)) = 2Φ(z1−α/2)− 1.

I Recall that we want

P
(
X − z1−α/2

σ√
n
≤ µ ≤ X + z1−α/2

σ√
n

)
= 1− α,

so, setting

1− α = 2Φ(z1−α/2)− 1 = 2(1− Φ(−z1−α/2))− 1

= 1− 2Φ(−z1−α/2)⇒ α = 2Φ(−z1−α/2).



The confidence interval for the mean (3)

I Therefore, a 100(1− α)% confidence interval on µ is given by

x − z1−α/2
σ√
n
≤ µ ≤ x + z1−α/2

σ√
n

I Since α = 2Φ(−z1−α/2), we can choose z1−α/2 as follows:

1. 99%⇒ α = 0.01⇒ Φ(−z1−α/2) = 0.005⇒ z1−α/2 = 2.57

2. 98%⇒⇒ α = 0.02⇒ Φ(−z1−α/2) = 0.01⇒ z1−α/2 = 2.32

3. 95%⇒⇒ α = 0.05⇒ Φ(−z1−α/2) = 0.025⇒ z1−α/2 = 1.96

4. 90%⇒⇒ α = 0.1⇒ Φ(−z1−α/2) = 0.05⇒ z1−α/2 = 1.64



The confidence interval for the mean — sample size

Confidence interval formulas give insight into the required sample
size: If x is used as an estimate of µ, we can be 100(1− α)%
confident that the error |x − µ| will not exceed a specified amount
∆ when the sample size is not smaller than

n =
(z1−α/2σ

∆

)2
,

since

|x − µ| ≤ ∆⇒ z1−α/2
σ√
n
≤ ∆⇒ n ≥

(z1−α/2σ
∆

)2
.



Hypothesis testing



Hypothesis testing — Choosing a school

A certain (and not very cheap) private school claims that its
students have a higher IQ. The entire student population is known
to have an IQ that is Gaussian distributed with mean 100 and
variance 16.

I Should we try to place our child in this school?

I Is the observed result significant (can be trusted?), or due
to a chance?

This School Entire population

90
95

10
0

10
5

11
0

11
5

IQ



Example (Medical treatment)

Consider an experimental medical treatment, in which 14 subjects
were randomly assigned to control or treatment group. The
survival times (in days) are shown in the table below.

Data Mean

Treatment group 91, 140, 16, 32, 101, 138, 24 77.428
Control group 3, 115, 8, 45, 102, 12, 18 43.285

I Did the treatment prolong the survival?

I Is the observed result significant, or due to a chance?

Making an error in this example, can have much more serious
consequences when placing a child in an average school.



Example (Tossing a coin)

I take a coin, toss it 10 times, and tell you the number of heads.

I Is this a fair coin?

I Is the observed result significant, or due to a chance?

Example (Testing an Improved Battery)

A manufacturer claims that its new improved batteries have a
much longer lifetime. The old batteries are known to have a
lifetime that is Normally distributed with mean 150 and variance
16. We measure the lifetime of nine batteries and obtain a sample
mean of 155 hours.

I Is this new battery superior to the previous version?

I Is the observed result significant, or due to a chance?



The framework

I Note that all the above examples are some-that similar.

I Specifically, we observed a system (school, or medical
treatment, or coin toss, or electric battery),

I and asked ourself the following questions:

1. Is the observed data is due to chance, or,
2. due to effect?

For example,

1. Is the observed IQ in the school is due to “chance”, or

2. the observed IQ in the school is due to “effect”; that is. one
should definitely prefer this school!

Can you provide a similar statement for the medical, coin toss (you
observed 7 heads out of 10 tosses), and battery experiments?



The framework

I To conclude, regardless the nature of our experiment, we
always ask the same question:

The question

Is the observed data is due to chance, or due to effect?

I This question brings us to a formulation of hypothesis.
Specifically, given a data, our first task is to formulate two
hypotheses.

The research hypotheses

1. The null hypothesis H0, which stands for our initial
assumption about the data.

2. The alternative hypothesis H1, (sometimes called HA).



Setting the Hypothesis

Note that the null and the alternative hypotheses are two mutually
exclusive statements!

Example (Criminal Trial)

I H0 : Defendant is not guilty.

I H1 : Defendant is guilty.

Example (Choosing a school)

1. H0 : The observed IQ in the school is due to “chance”.

2. H1 : The observed IQ in the school is due to “effect”. (One
should definitely prefer this school!)



Setting the Hypothesis

Example (Medical treatment)

1. H0 : The observed data is due to “chance”, that is, the
treatment does not prolong the survival.

2. H1 : The observed data is due to “effect”. (One should
definitely consider this treatment!)

Example (Coin toss with 7 out of 10 heads)

1. H0 : The observed data is due to “chance”, that is, the coin is
fair.

2. H1 : The observed data is due to “effect”; that is, the coin is
biased.

Can you provide H0 and H1 for the battery experiment?



Hypothesis testing

Hypothesis testing

The general idea of hypothesis testing involves the following
steps.

1. Collecting data.

2. Formulating the H0 and the H1 hypotheses.

3. Based on the data, decide whether to reject or not
reject the initial hypothesis H0.

I Sometimes, we alternate the first and the second steps.

I The first and the second steps look manageable.

I The third step looks like the most interesting (critical) one.

At this stage, suppose that we performed a test and made a
decision regarding the null hypothesis.



Making an error

Regardless of the procedure in the third step, we either

1. reject H0, or

2. do not reject H0.

This, can lead to an error, which is summarized in the table below.

True state

Decision H0 true H1 true

Retain H0 OK Type II error (false negative)

Reject H0 Type I error (false positive) OK



Making an error

Definition (Significance level of the statistical test)

The probability of a type I error is called the significance level of
the test and is denoted by α. (It is common to set the
significance level to 0.05, that is, accepting to have a 5%
probability of incorrectly rejecting the null hypothesis.)

α = P(type I error) = P(reject H0 | H0 is true)

Definition (Power of the statistical test)

The probability of a type II error is called the power of the test
and is denoted by β. β is the probability of making type II error.

β = P(type II error) = P(retain H0 | H1 is true)

Hypothesis testing

We wish: α is low and power (1− β) as high as can be.



Some remarks

I In most hypothesis tests used in practice (and in this course),
a specified level of type I error, α is predetermined (e.g.
α = 0.05) and the type II error is not directly specified.

I The probability of making a type II error also depends on the
sample size n - increasing the sample size results in a decrease
in the probability of a type II error.

I The population (or natural) variability (e.g. described by σ)
also affects the power.



The formal hypothesis testing framework - rejection region,
test statistics, and critical value

I Let X be a random variable such that X is the range of X .

I The hypothesis testing is performed via finding an appropriate
subset of outcomes R ⊂ X called the rejection region.

I Specifically, if{
X ∈ R ⇒ reject the null hypothesis H0

X /∈ R ⇒ do not reject the null hypothesis.

I In many cases, the rejection region R takes the form of

R = {x : T (x) > c} ,

where T is some test statistic and c is called a critical
value.



Back to the school example

Example (Choosing a school)

Recall that the total population IQ is distributed according to
N(100, 16), and suppose that we gathered some data X1, . . . ,Xn

from this private school.

I A reasonable test statistics T (X1, . . . ,Xn), can be:

T (X1, . . . ,Xn) =
1

n

n∑
i=1

Xi − 100 = X − 100.

I Intuitively, we should reject the null hypothesis is X − 100 is
large.

I To do so, we should define large. Specifically, we need to
specify the critical value c , (say c = 4?), such that the
rejection region is defined via:

R =
{
X1, . . . ,Xn : X − 100 > c

}
.



Finding the critical value

So, what is the appropriate critical value c?

Recall that the Type I error (false positive), happens when we
reject H0 when it is in fact true.

Definition (A reminder: Significance level of the statistical
test)

The probability of a type I error is called the significance level of
the test and is denoted by α.

That is, c will be a function of the significance level α that is
defined by us!

Intuitively, the critical value c should depend on the test’s
significance level. The larger is c , the smaller is α. In particular,
recall the school rejection region

R =
{
X1, . . . ,Xn : X − 100 > c

}
.



Example (Finding critical value)

I Let X1, . . . ,Xn ∼ N(µ, σ2), (σ is known).

I We would like to test H0 : µ = µ0, H1 : µ > µ0. Therefore,
Θ = [µ0,∞), ,Θ0 = {µ0}, ,Θ1 = (µ0,∞).

I We choose the test statistics T to be T = X , and, we define
the rejection region to be

R =
{
x1, . . . , xn : X > c

}
.

I Finally, we set the significance level of the test to be α.

I Here is some calculus:

α = Pµ0(X > c)︸ ︷︷ ︸
Type I error

= Pµ0
(√

n(X − µ0)

σ
>

√
n(c − µ0)

σ

)

= P
(
Z >

√
n(c − µ0)

σ

)
= 1− Φ

(√
n(c − µ0)

σ

)
= α.



Example (Finding critical value cnt.)

So,

Pµ0(X > c) = 1− Φ

(√
n(c − µ0)

σ

)
= α.

Therefore, the critical value c is:

c = µ0 +
σΦ−1(1− α)√

n
.

Note that Φ(1− α) is monotonically increasing function, that is,

The critical value c grows as α decrease! (As expected!)



I The area of the shaded area is α!

I So, if the observed test statistics falls into the shaded area, we
reject the null hypothesis.



Equivalent approach: p-value

Definition (p-value)

The p-value is the probability that under the null hypothesis, the
random test statistic takes a value as extreme as or more extreme
than the one observed.



Equivalent approach: p-value

I Critical region and p-values are essentially the same.

I However, it is easier to work with p-values; we will see why.

I The general statistical test procedures using p-values is as
follows.

1. Formulate a statistical model for the data.

2. Give the null and alternative hypotheses (H0 and H1).

3. Choose an appropriate test statistic.

4. Determine the distribution of the test statistic
under H0.

5. Evaluate the outcome of the test statistic.

6. Calculate the p-value.

7. Accept or reject H0 based on the p-value.



Equivalent approach: p-value

In the last step, if we reject H0 for p-value less than α, we are back
again to the statistical significance!

An easy to remember rule is:

p-value low ⇒ H0 must go!

p-value evidence

< 0.01 very strong evidence against H0

0.01− 0.05 moderate evidence against H0

0.05− 0.10 suggestive evidence against H0

> 0.1 little or no evidence against H0



Example

I Let X1, . . . ,Xn ∼ N(µ, σ2), (σ is known).

I We would like to test H0 : µ = µ0, H1 : µ > µ0. Therefore,
Θ = [µ0,∞), ,Θ0 = {µ0}, ,Θ1 = (µ0,∞).

I We choose the test statistics T to be T = X .

I Under H0, T is distributed N(µ0, σ
2/n).

I Calculate the p-value:

PH0(T (X ) > X ) = · · · = P
(
Z >

X − µ0
σ/
√
n

)
= 1−Φ

(
X − µ0
σ/
√
n

)
.

I If PH0(T (X ) > X ) is less than the test significance level α, we
reject the null hypothesis.

I It can be shown that this is absolutely identical to the usage
of the critical value and the rejection region.



Types of tests

I Right one-sided test: where H0 is rejected for the p-value
defined by PH0(T ≥ t).

I Left one-sided test: where H0 is rejected for the p-value
defined by PH0(T ≤ t).

I Two-sided test: where H0 is rejected for the p-value defined
by PHo (T ≥ t) + PHo (T ≤ −t) = 2PHo (T ≥ t).


