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Statistical inference (a reminder)

I Let X1, . . . ,Xn ∼ F (x) be a data drawn randomly from some
unknown distribution F .

I Assume that the data is independent and identically
distributed (i.i.d).

1. Xi ∼ F (x) for all 1 ≤ i ≤ n
2. Xi s are independent

I Statistical Inference is the process of forming judgements
about the parameters



Our setup

I Setup: A sample x1, . . . , xn (collected values).

I Model: An i.i.d. sequence of random variables,
X1, . . . ,Xn.

I Parameter at question: The population mean, E[Xi ].

I Point estimate: x (described by the random variable x).

The main objective: Devise hypothesis tests and confidence
intervals for µ = E[Xi ].

We distinguish between the two cases:

I Unrealistic (but simpler): The population variance, σ2, is
known.

I More realistic: The variance is not known and estimated by
the sample variance, s2.



Private school

Recall the private school example, which claims that its students
have a higher IQ.

I Should we try to place our child in this school?
I Is the observed result significant (can be trusted?), or due

to a chance?
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The entire student population is known to have an IQ that is
Gaussian distributed with mean 100 and variance 16.



Medical treatment

Recall experimental medical treatment example, in which 14
subjects were randomly assigned to control or treatment group.
The survival times (in days) are shown in the table below.

Data Mean

Treatment group 91, 140, 16, 32, 101, 138, 24 77.428
Control group 3, 115, 8, 45, 102, 12, 18 43.285

We asked:

I Did the treatment prolong the survival?

I Is the observed result significant, or due to a chance?

The variance is not known and estimated by the sample vari-
ance, s2.



Known variance — the Z -test

I A Z -test is any statistical test for which the distribution of the
test statistic (the mean) under the null hypothesis can be
approximated by a normal distribution (with known variance).

I Thanks to the central limit theorem, many test statistics are
approximately normally distributed for large enough samples.



Z -test

I Let X1, . . . ,Xn ∼ N(µ, σ2), (σ is known).

I Let us test H0 : µ = µ0, H1 : µ > µ0.

I We choose the test statistics T to be T = X .

I The p-value (the probability that under the null hypothesis,
the random test statistic takes a value as extreme as or more
extreme than the one observed) is

p-value = PH0

 X︸︷︷︸
random variable!

> x︸︷︷︸
observed average!

 .

I Recall that: p-value low ⇒ H0 must go!

p-value evidence

< 0.01 very strong evidence against H0

0.01− 0.05 moderate evidence against H0

0.05− 0.10 suggestive evidence against H0

> 0.1 little or no evidence against H0



Z -test

I So, we need to calculate:

p-value = PH0

 X︸︷︷︸
random variable!

> x︸︷︷︸
observed average!

 .

I Recall that If X ∼ N(µ, σ2), then

X − µ
σ

∼ N(0, 1).

I Since X is approximately normally distributed, we can
standardize this normal random variable and arrive at the Z
score:

Z =
X − µ0
σ/
√
n
.



Z -test

We arrived at

Z =
X − µ0
σ/
√
n
, z =

x − µ0
σ/
√
n
, (1)

since

p-value = PH0

 X︸︷︷︸
random variable!

> x︸︷︷︸
observed average!



= PH0

X − µ0
σ/
√
n︸ ︷︷ ︸

(1)

<
x − µ0
σ/
√
n︸ ︷︷ ︸

(1)

 .



The Z -test

I Recall that (CLT)(
1
n

∑n
i=1 Xi − µ√

σ
n

)
=
√
n

(
X − µ
σ

)
approx. dist. N(0, 1).

I For very small samples, the results we present are valid only if
the population is normally distributed.

I We will generally require the sample size to be at least greater
than 20.

I Let H0 : µ = µ0, and

H1 :


µ > µ0 right one sided test, or

µ < µ0 left one sided test, or

µ 6= µ0 two sided test

I The test statistic is the average — X .



The Z -test

So we define the Z -score, to be:

z =
x − µ0
σ/
√
n
,

I That is,

PH0

(
X︸︷︷︸

test statistics

> x︸︷︷︸
observed

)
= PH0

X − µ0
σ/
√
n︸ ︷︷ ︸

Z∼N(0,1)

>
x − µ0
σ/
√
n

 ,

I or

PH0

(
X < x

)
= PH0

(
X − µ0
σ/
√
n
<

x − µ0
σ/
√
n

)
,



Types of tests

I Right one-sided test: where H0 is rejected for the p-value
defined by PH0(T ≥ t).

I Left one-sided test: where H0 is rejected for the p-value
defined by PH0(T ≤ t).

I Two-sided test: where H0 is rejected for the p-value defined
by PHo (T ≥ t) + PHo (T ≤ −t) = 2PHo (T ≥ t).



Right one-sided test ( H1 : µ ≥ µ0 — PH0
(T ≥ t))

PH0

(
X > x

)
= PH0

X − µ0
σ/
√
n
>

x − µ0
σ/
√
n︸ ︷︷ ︸

z

 = 1− Φ(z)

Rejection Criterion for Fixed-Level Tests:

z > z1−α.



Left one-sided test (H1 : µ ≤ µ0 — PH0
(T ≤ t))

PH0

(
X < x

)
= PH0

X − µ0
σ/
√
n
<

x − µ0
σ/
√
n︸ ︷︷ ︸

z

 = Φ(z)

Rejection Criterion for Fixed-Level Tests:

z < zα.



Two-sided test (H1 : µ 6= µ0 —
PHo

(T ≥ |t|) + PHo
(T ≤ −|t|))

PH0

(
X > |x |

)
+ PH0

(
X < −|x |

)
= 2PH0

X − µ0
σ/
√
n
>

∣∣∣∣∣∣∣∣
x − µ0
σ/
√
n︸ ︷︷ ︸

z

∣∣∣∣∣∣∣∣


= 2(1− Φ(|z |))

Rejection Criterion for Fixed-Level Tests:

z < zα/2 or z > z1−α/2.



Z -test summary



Z -test example (1)

using Distributions

using HypothesisTests

srand(12345)

private_school1 = rand(Normal(100,2), 50)

OneSampleZTest(private_school1,100)

private_school2 = rand(Normal(101,2), 50)

OneSampleZTest(private_school2,100)



Z -test example (2)

private_school1 = rand(Normal(100,2), 50)

OneSampleZTest(private_school1,100)

One sample z-test

-----------------

Population details:

parameter of interest: Mean

value under h_0: 100

point estimate: 100.19550449696595

95% confidence interval: (99.6332, 100.7577)

Test summary:

outcome with 95% confidence: fail to reject h_0

two-sided p-value: 0.49553020954367355

Details:

number of observations: 50

z-statistic: 0.6815394561145689

population standard error: 0.28685719544473093



Z -test example (3)

private_school2 = rand(Normal(101,2), 50)

OneSampleZTest(private_school2,100)

One sample z-test

-----------------

Population details:

parameter of interest: Mean

value under h_0: 100

point estimate: 100.80408350696453

95% confidence interval: (100.26671, 101.34145)

Test summary:

outcome with 95% confidence: reject h_0

two-sided p-value: 0.0033599975479617957

Details:

number of observations: 50

z-statistic: 2.9327264839267215

population standard error: 0.2741760990571197



Z -test’s assumptions

I Nuisance parameters should be known, or estimated with high
accuracy (standard deviation).

I In particular, when the sample size n is large you may use

S =

√√√√ 1

n − 1

n∑
i=1

(
Xi − X

)2
,

instead of σ.

I The test statistic should follow a normal distribution. If the
variation of the test statistic is strongly non-normal, a Z-test
should not be used.



Z -test’s assumptions

I In the (very realistic) case where σ2 is not known, but rather
estimated by S2, we would like to replace the test statistic, Z ,
with,

T =
x − µ0
S/
√
n
,

I Note that T no longer follows a Normal distribution!

I However, Under H0 : µ = µ0, and for moderate or large
samples (e.g. n > 100) this statistic is approximately
Normally distributed just like above. In this case, the
procedures above work well.

But for smaller samples, the distribution of T is no longer Nor-
mally distributed. Nevertheless, it follows a well known and
very famous distribution of classical statistics: The Student-t
Distribution.



The t-test

I The t-statistic was introduced in 1908 by William Sealy
Gosset, a chemist working for the Guinness brewery in Dublin,
Ireland.

I It can happen that we do not know the standard deviation, or

I the number of samples is less than 30.



The t-test

In this case, use the t-test. The t statistics with n − 1 degrees of
freedom is

Tn−1 =
X − µ0
S/
√
n
,

where S is the estimated standard deviation:

S2 =
1

n − 1

n∑
i=1

(
Xi − X

)2
.

I Use the t-test when the data is approximately normally
distributed.

I For large n, t-test is indistinguishable from the z-test.



The t-distribution

I The probability density function of a Student-t Distribution
with a parameter k , referred to as degrees of freedom, is,

f (x , k) =
Γ((k + 1)/2)√
πkΓ(k/2)

1

[(x2/k) + 1](k+1)/2
, −∞ < x <∞,

where Γ(·) is the Gamma-function:

Γ(k) =

∫ ∞
0

xk−1e−xdx .

I It is a symmetric distribution about 0 and as k →∞, it
approaches a standard Normal distribution.



The t-distribution



Why do we care about the t-distribution?

I Let X1,X2, . . . ,Xn be an i.i.d. sample from a Normal
distribution with mean µ and variance σ2.

I The random variable,

T =
X − µ0
S/
√
n
,

has a t-distribution with n − 1 degrees of freedom.

I Now, knowing the distribution of T (and noticing it depends
on the sample size, n), allows us to construct hypothesis tests
and confidence intervals when σ2 is not known, analogous to
the (Z-tests and confidence intervals).



Confidence and prediction intervals

I If x and s are the mean and standard deviation of a random
sample from a normal distribution with unknown variance σ2,
a 100(1− α) confidence interval on µ is given by:

x − t1−α/2,n−1
s√
n
≤ µ ≤ x + t1−α/2,n−1

s√
n
,

where t1−α/2,n−1 is the 1− α/2 quantile of the t distribution
with n - 1 degrees of freedom.

I A related concept is a100(1− α) prediction interval (PI) on a
single future observation from a normal distribution is given by

x − t1−α/2,n−1s

√
1 +

1

n
≤ Xn+1 ≤ x + t1−α/2,n−1s

√
1 +

1

n

This is the range where we expect the n + 1 observation to
be, after observing n observations and computing x and s.



Types of tests (again)

I Right one-sided test: where H0 is rejected for the p-value
defined by PH0(T ≥ t).

I Left one-sided test: where H0 is rejected for the p-value
defined by PH0(T ≤ t).

I Two-sided test: where H0 is rejected for the p-value defined
by PHo (T ≥ t) + PHo (T ≤ −t) = 2PHo (T ≥ t).



t-test summary



t-test summary

I In the p-value calculation, Fn−1(·) denotes the CDF of the
t-distribution with n − 1 degrees of freedom.

I As opposed to Φ(·), the CDF of t is not tabulated in standard
tables. So to calculate p-values, we use software.



t-test example (1)

private_school3 = [68.6869,88.7492,99.3467,81.4199 ]

OneSampleZTest(private_school3,100)

One sample z-test

-----------------

Population details:

parameter of interest: Mean

value under h_0: 100

point estimate: 84.550675

95% confidence interval: (71.92434, 97.17700)

Test summary:

outcome with 95% confidence: reject h_0

two-sided p-value: 0.01647705084278339

Details:

number of observations: 4

z-statistic: -2.3981736722165747

population standard error: 6.442121010243833



t-test example (2)

private_school3 = [68.6869,88.7492,99.3467,81.4199 ]

OneSampleTTest(private_school3,100)

One sample t-test

-----------------

Population details:

parameter of interest: Mean

value under h_0: 100

point estimate: 84.550675

95% confidence interval: (64.04897, 105.052379)

Test summary:

outcome with 95% confidence: fail to reject h_0

two-sided p-value: 0.09603209715776699

Details:

number of observations: 4

t-statistic: -2.3981736722165747

degrees of freedom: 3

empirical standard error: 6.442121010243833


