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Regression analysis

We consider problems in engineering that involve a study or
analysis of the relationship between two or more variables.

Consider the following examples.

I The pressure of a gas in a container is related to the
temperature.

I The velocity of water in an open channel as a function of the
channel width.

We examine dependent variable and one or more independent
variables also called predictors.



Regression analysis

I The collection of statistical tools that are used to model and
explore relationships between variables that are related in a
non deterministic manner is called regression analysis.

I Of key importance is the conditional expectation:

E[Y | x ] = µY |x = β0 + β1x .

I Specifically,

Y = β0 + β1x + ε,

where:

I x is a non-random predictor, and

I ε is a random (noise) variable, such that E[ε] = 0, and
Var(ε) = σ2.



Simple Linear Regression

The setting is as follows.

I Both x and y are scalars, in which case the collected data
consisits of n tuples:

(x1, y1), . . . , (xn, yn).

I We assume that the relation between x and y is “linear” in
the sense that

y ≈ β0 + β1x .

I Since we do not have all possible tuples, we can only estimate
β0 and β1 by β̂0 and β̂1, respectively. That is, we write:

yi = β̂0 + β̂1xi + ei , i = 1, . . . , n.

I The quantity ei is called the residual. Note the
correspondence between the noise random variable ε and ei .



The predicted observation

I In general, the predicted observation is defined via

ŷ = β̂0 + β̂1x .

I Note that we can also compute predicted observations for our
data (xi , yi ){1≤i≤n}.

Ideally, we would like to find β̂0 and β̂1, such that yi = ŷi ,
that is, ei = 0 for all i = 1, . . . , n.



Simple Linear Regression (1)

Ideally, we would like to find β̂0 and β̂1, such that yi = ŷi ,
that is, ei = 0 for all i = 1, . . . , n.



Simple Linear Regression (2)

Ideally, we would like to find β̂0 and β̂1, such that yi = ŷi ,
that is, ei = 0 for all i = 1, . . . , n.



Total mean squared error

The total mean squared error is defined via

L = SSE =
n∑

i=1

e2i =
n∑

i=1

(yi − ŷi )
2 =

n∑
i=1

(yi − β0 − β1xi )2.

In practice, σ2 6= 0, that is, all points do not lie on the same
line), and therefore we have that L > 0.



The least squares estimators

I To find the best estimators β̂0 and β̂1, we would like to
minimize

L =
n∑

i=1

(yi − β0 − β1xi )2.

I Specifically, solve

β̂0, β̂1 = argminβ0,β1

n∑
i=1

(yi − β0 − β1xi )2.

I The solution, called the least squares estimators must satisfy:

∂L

∂β0

∣∣∣β̂0,β̂1 = −2
n∑

i=1

(yi − β0 − β1xi ) = 0

∂L

∂β1

∣∣∣β̂0,β̂1 = −2
n∑

i=1

(yi − β0 − β1xi ) xi = 0.



The least squares estimators

I Simplifying these two equations yields

nβ̂0 + β̂1

n∑
i=1

xi =
n∑

i=1

yi

β̂0

n∑
i=1

xi + β̂1

n∑
i=1

x2i =
n∑

i=1

yixi .

I These are called the least squares normal equations.

I The solution to the normal equations results in the least
squares estimators β̂0 and β̂1.



The least squares solution

Using the sample means, x and y

x =
1

n

n∑
i=1

xi , y =
1

n

n∑
i=1

yi ,

the estimators are:

β̂0 = y − β̂1x

β̂1 =

∑n
i=1 xiyi −

(
∑n

i=1 xi)(
∑n

i=1 yi)
n∑n

i=1 x
2
i −

(
∑n

i=1 xi)
2

n



Additional quantities of interest

SXX =
n∑

i=1

(xi − x)2 =
n∑

i=1

x2i −
(
∑n

i=1 xi )
2

n

SXY =
n∑

i=1

(xi − x) (yi − y) =
n∑

i=1

xiyi −
(
∑n

i=1 xi ) (
∑n

i=1 yi )

n

That is,

β̂1 =

∑n
i=1 xiyi −

(
∑n

i=1 xi)(
∑n

i=1 yi)
n∑n

i=1 x
2
i −

(
∑n

i=1 xi)
2

n

=
SXY
SXX

.

In addition, we have:

SST =
n∑

i=1

(yi − y)2, SSR =
n∑

i=1

(ŷi − y)2, SSE =
n∑

i=1

(ŷi − yi )
2.



The Analysis of Variance

I We did not consider the final unknown parameter in our
regression model:

Y = β0 + β1x + ε,

namely, the Var(ε) = σ2.

I We use the residuals ei = ŷi − yi , to obtain an estimate of σ2.

I Specifically,

SSE =
n∑

i=1

(ŷi − yi )
2,

and it can be shown that

E[SSE ] = (n − 2)σ2,

so:

σ̂2 =
SSE
n − 2

.



The Analysis of Variance Identity

It holds that:
SST = SSR + SSE ,

where

SST =
n∑

i=1

(yi − y)2

SSR =
n∑

i=1

(ŷi − y)2

SSE =
n∑

i=1

(ŷi − yi )
2.



How good is my regression model?

A widely used measure for a regression model is the following ratio
of sum of squares, which is often used to judge the adequacy of a
regression model:

R2 =
SSR
SST

= 1− SSE
SST

,

where

SST =
n∑

i=1

(yi − y)2

SSR =
n∑

i=1

(ŷi − y)2

SSE =
n∑

i=1

(ŷi − yi )
2.



Properties of least square estimator

E[β̂0] = β0, Var
(
β̂0

)
= σ2

[
1

n
+

x2

SXX

]
,

E[β̂1] = β1, Var
(
β̂1

)
=

σ2

SXX
,

Therefore, the estimated standard error of the slope and the
estimated standard error of the intercept are:

se
(
β̂0

)
=

√
σ2
[

1

n
+

x2

SXX

]
,

se
(
β̂1

)
=

√
σ2

SXX
.



Hypothesis tests in linear regression (1)

I Suppose we would like to test:

H0 : β1 = β1,0, H1 : β1 6= β1,0.

I The Test Statistic for the Slope is

T =
β̂1 − β1,0√

σ2

SXX

.

I Under H0, the test statistic T follows a t - distribution with
n − 2 degree of freedom.



Hypothesis tests in linear regression (2)

I Suppose we would like to test:

H0 : β0 = β0,0, H1 : β0 6= β1,0.

I The Test Statistic for the intercept is

T =
β̂0 − β0,0√
σ2
[
1
n + x2

SXX

] .
I Under H0, the test statistic T follows a t - distribution with

n − 2 degree of freedom.



Hypothesis tests in linear regression

An important special case of the hypotheses is:

H0 : β1 = 0, H1 : β1 6= 0.

If we fail to reject H0 : β1 = 0, this indicates that there is no

linear relationship between x and y .



The F distribution

I An alternative is to use the F statistic as is common in
ANOVA (Analysis of Variance) (not covered fully in the
course).

I Under H0, the test statistic

F =
SSR/1

SSE/(n − 2)
=

MSR
MSE

,

follows an F - distribution with 1 degree of freedom in the
numerator and n − 2 degrees of freedom in the denominator.

I Here,
MSR = SSR/1, MSE = SSE/(n − 2).



Analysis of Variance Table for Testing Significance of
Regression



Additional remarks

I There are also confidence intervals for β̂0 and β̂1 as well as
prediction intervals for observations. We do not cover these
formulas.

I To check the regression model assumptions, we plot the
residuals ei and check for:

I Normality,

I Constant variance, and,

I Independence



Logistic Regression

I Take the response variable, Yi as a Bernoulli random variable.

I In this case notice that E[Y ] = P(Y = 1).

I The logit response function has the form

E[Y ] =
eβ0+β1x

1 + eβ0+β1x
.

I Fitting a logistic regression model to data yields estimates of
β0 and β1.

I The following formula is called the odds:

E[Y ]

1− E[Y ]
= eβ0+β1x .


