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Regression analysis
We consider problems in engineering that involve a study or
analysis of the relationship between two or more variables.
Consider the following examples.

The pressure of a gas in a container is related to the
temperature.

The velocity of water in an open channel as a function of the
channel width.

We examine dependent variable and one or more independent
variables also called predictors.




Regression analysis

The collection of statistical tools that are used to model and
explore relationships between variables that are related in a
non deterministic manner is called regression analysis.

Of key importance is the conditional expectation:

E[Y | x] = py|x = Bo + Bix.

Specifically,

Y = BO + le + €,
where:
X is a non-random predictor, and

e is a random (noise) variable, such that E[e] = 0, and
Var(e) = o2.




Simple Linear Regression

The setting is as follows.
Both x and y are scalars, in which case the collected data

consisits of n tuples:

(Xlayl), cees (Xna_yn)'

We assume that the relation between x and y is “linear” in
the sense that

y = Bo + Pix.

Since we do not have all possible tuples, we can only estimate
Bo and 1 by Bg and (1, respectively. That is, we write:

YI:BO‘FBthFei, i=1,...,n.

The quantity e; is called the residual. Note the
correspondence between the noise random variable € and e;.



The predicted observation
» In general, the predicted observation is defined via
y = Bo + pix.

» Note that we can also compute predicted observations for our
data (xj, ¥i){1<i<n}-

Ideally, we would like to find Bo and Bl, such that y; = y;,
thatis, e =0 forall i =1,...,n.




Simple Linear Regression (1)

Ideally, we would like to find 3o and 51, such that y; = ¥,
thatis, e =0 forall i =1,...,n.
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Simple Linear Regression (2)

Ideally, we would like to find 3o and 51, such that y; = ¥,
thatis, e =0 forall i =1,...,n.

501 e Dpata

25 4 —— Fitted model

4.0 4
35 4
3.0 1
254

204

15 A




Total mean squared error
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The total mean squared error is defined via

n n

L= 55 = Ze,-z = Z(YI —)7;)2 = Z(YI —Bo — /lei)z'
i=1

i=1 i=1

In practice, 02 # 0, that is, all points do not lie on the same
line), and therefore we have that L > 0.




The least squares estimators

To find the best estimators /3’0 and 31, we would like to

minimize
n

L= (vi—Bo— Brxi)*.

i=1
Specifically, solve

n

30, Bl = argming g Z (vi — Bo— 51Xi)2~

i=1
The solution, called the least squares estimators must satisfy:
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n
i =22 (Vi —Bo— Prx;) =0
i=1

30731 = 722 (yl - BO - 51X,')Xl' = 0

i=1




The least squares estimators

Simplifying these two equations yields

n n
nfo +312Xi = Z)/i
i=1

i=1

n n n

R R )

Bo § xi + B1 § X = E YiXi.
i1 i—1 i—1

These are called the least squares normal equations.

The solution to the normal equations results in the least
squares estimators 5y and fi.



The least squares solution

Using the sample means, x and y

1 < 1 <
an;Xi, YZ;Zyi,
i= i=1

x|

the estimators are:

Zn (Z,‘n:l Xf)(z,'n:1 )’i)

/31 = =1 Xi¥i — n

n . 2
> Xi2 - (Z,-:; )



Additional quantities of interest

n n n 2
SXX:Z(XI—7)2=ZXI2—M

- ; n
i=1 i=1
_ . N =y . o (i x) (i i)
Sxy = ; (XI X) (}/l }/) = gxl)// n
That is,
By = Doy XiYi — (2E X")n(z":1 %) _ SXY'
S X — (Z2ix) Sxx
In addition, we have:

SST=3_ (=¥ SSk=3_(5i—¥) S5 =3 (5i-»)"

i=1 i=1 i=1



The Analysis of Variance

We did not consider the final unknown parameter in our
regression model:

Y = Bo + Bix + €,

namely, the Var(e) = 2.

We use the residuals e; = §; — y;, to obtain an estimate of o2.

Specifically,

SSe =Y (i —y)
i=1
and it can be shown that
E[SSg] = (n — 2)0?,
so:

~2 55E
n—2




The Analysis of Variance Identity

It holds that:
55+ = S5 + SSE,
where .
SSt=> (vi—-y)
i=1
n
SSk=Y (5 —y)

i=1
SSe =Y (i —y)*

i=1



How good is my regression model?

A widely used measure for a regression model is the following ratio
of sum of squares, which is often used to judge the adequacy of a
regression model:

SSk SSe
R2=""F_1_=>"¢%
SSt SSt’
where .
SSt=> (vi—-y)

i=1
n
SSr=>Y (5 —y)’
i=1
n
SSe=> (9 —yi)>.

i=1



Properties of least square estimator

2
E[Bo] = Bo, Var (30) =o° [1 + = } ,

n Sxx

0.2

E[31] = 1, Var <31) =S
XX

Therefore, the estimated standard error of the slope and the

estimated standard error of the intercept are:



Hypothesis tests in linear regression (1)

Suppose we would like to test:

Ho : 1= P10, Hi:p1# Bro-

The Test Statistic for the Slope is

51 B, 0
0-2
V Sxx
Under Hy, the test statistic T follows a t - distribution with
n — 2 degree of freedom.

T



Hypothesis tests in linear regression (2)

Suppose we would like to test:
Ho : Bo = Boo, Hi:Bo # Bio-
The Test Statistic for the intercept is
Bo — Bo,o '

21, X
o {n—i_sxx]

T =

Under Hy, the test statistic T follows a t - distribution with
n — 2 degree of freedom.



Hypothesis tests in linear regression

An important special case of the hypotheses is:

Ho:p1 =0, Hi:p1#0.
If we fail to reject Hp : 81 = 0, this indicates that there is no

linear relationship between x and y.




The F distribution

An alternative is to use the F statistic as is common in
ANOVA (Analysis of Variance) (not covered fully in the
course).

Under Hp, the test statistic

F__ SSR/L__ MsSg
N 555/(”—2) N MSE7

follows an F - distribution with 1 degree of freedom in the
numerator and n — 2 degrees of freedom in the denominator.

Here,

MSg = SSp/1, MSg = SSg/(n— 2).



Analysis of Variance Table for Testing Significance of

Regression
Source of Sum of Degrees of Mean Fy
Variation Squares Freedom Square
Regression SSg = Bl Sy 1 MSg MSgr/MSE
Error SSgp =881 — 1Sy n—2 MSg
Total SSt n—1




Additional remarks

There are also confidence intervals for 5y and 31 as well as
prediction intervals for observations. We do not cover these
formulas.

To check the regression model assumptions, we plot the
residuals €; and check for:

Normality,

Constant variance, and,

Independence



Logistic Regression

Take the response variable, Y; as a Bernoulli random variable.
In this case notice that E[Y] =P(Y =1).

The logit response function has the form

eﬁO+BlX

E[Y]= 1 + ebotPix’

Fitting a logistic regression model to data yields estimates of
Bo and B1.

The following formula is called the odds:

E[Y] — ePothix
1—-E[Y]



