STAT2201

Analysis of Engineering \& Scientific Data

Unit 9

Slava Vaisman

The University of Queensland School of Mathematics and Physics

Regression analysis

We consider problems in engineering that involve a study or analysis of the relationship between two or more variables.

Consider the following examples.

- The pressure of a gas in a container is related to the temperature.
- The velocity of water in an open channel as a function of the channel width.

We examine dependent variable and one or more independent variables also called predictors.

Regression analysis

- The collection of statistical tools that are used to model and explore relationships between variables that are related in a non deterministic manner is called regression analysis.
- Of key importance is the conditional expectation:

$$
\mathbb{E}[Y \mid x]=\mu_{Y \mid x}=\beta_{0}+\beta_{1} x
$$

- Specifically,

$$
Y=\beta_{0}+\beta_{1} x+\epsilon,
$$

where:

- x is a non-random predictor, and
- ϵ is a random (noise) variable, such that $\mathbb{E}[\epsilon]=0$, and $\operatorname{Var}(\epsilon)=\sigma^{2}$.

Simple Linear Regression

The setting is as follows.

- Both x and y are scalars, in which case the collected data consisits of n tuples:

$$
\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)
$$

- We assume that the relation between x and y is "linear" in the sense that

$$
y \approx \beta_{0}+\beta_{1} x
$$

- Since we do not have all possible tuples, we can only estimate β_{0} and β_{1} by $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$, respectively. That is, we write:

$$
y_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}+e_{i}, \quad i=1, \ldots, n
$$

- The quantity e_{i} is called the residual. Note the correspondence between the noise random variable ϵ and e_{i}.

The predicted observation

- In general, the predicted observation is defined via

$$
\hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} x
$$

- Note that we can also compute predicted observations for our data $\left(x_{i}, y_{i}\right)_{\{1 \leq i \leq n\}}$.

Ideally, we would like to find $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$, such that $y_{i}=\hat{y}_{i}$, that is, $e_{i}=0$ for all $i=1, \ldots, n$.

Simple Linear Regression (1)

Ideally, we would like to find $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$, such that $y_{i}=\hat{y}_{i}$, that is, $e_{i}=0$ for all $i=1, \ldots, n$.

Simple Linear Regression (2)

Ideally, we would like to find $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$, such that $y_{i}=\hat{y}_{i}$, that is, $e_{i}=0$ for all $i=1, \ldots, n$.

Total mean squared error

The total mean squared error is defined via

$$
L=S S_{E}=\sum_{i=1}^{n} e_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}=\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2} .
$$

In practice, $\sigma^{2} \neq 0$, that is, all points do not lie on the same line), and therefore we have that $L>0$.

The least squares estimators

- To find the best estimators $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$, we would like to minimize

$$
L=\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}
$$

- Specifically, solve

$$
\hat{\beta}_{0}, \hat{\beta}_{1}=\operatorname{argmin}_{\beta_{0}, \beta_{1}} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2} .
$$

- The solution, called the least squares estimators must satisfy:

$$
\begin{aligned}
& \left.\frac{\partial L}{\partial \beta_{0}}\right|_{\hat{\beta}_{0}, \hat{\beta}_{1}}=-2 \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)=0 \\
& \left.\frac{\partial L}{\partial \beta_{1}}\right|_{\hat{\beta}_{0}, \hat{\beta}_{1}}=-2 \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right) x_{i}=0
\end{aligned}
$$

The least squares estimators

- Simplifying these two equations yields

$$
\begin{aligned}
& n \hat{\beta}_{0}+\hat{\beta}_{1} \sum_{i=1}^{n} x_{i}=\sum_{i=1}^{n} y_{i} \\
& \hat{\beta}_{0} \sum_{i=1}^{n} x_{i}+\hat{\beta}_{1} \sum_{i=1}^{n} x_{i}^{2}=\sum_{i=1}^{n} y_{i} x_{i}
\end{aligned}
$$

- These are called the least squares normal equations.
- The solution to the normal equations results in the least squares estimators $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$.

The least squares solution

Using the sample means, x and y

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}, \quad \bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i},
$$

the estimators are:

$$
\begin{aligned}
& \hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x} \\
& \hat{\beta}_{1}=\frac{\sum_{i=1}^{n} x_{i} y_{i}-\frac{\left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} y_{i}\right)}{n}}{\sum_{i=1}^{n} x_{i}^{2}-\frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n}}
\end{aligned}
$$

Additional quantities of interest

$$
\begin{aligned}
& S_{X X}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\sum_{i=1}^{n} x_{i}^{2}-\frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n} \\
& S_{X Y}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)=\sum_{i=1}^{n} x_{i} y_{i}-\frac{\left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} y_{i}\right)}{n}
\end{aligned}
$$

That is,

$$
\hat{\beta}_{1}=\frac{\sum_{i=1}^{n} x_{i} y_{i}-\frac{\left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} y_{i}\right)}{n}}{\sum_{i=1}^{n} x_{i}^{2}-\frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n}}=\frac{S_{X Y}}{S_{X X}} .
$$

In addition, we have:

$$
S S_{T}=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}, \quad S S_{R}=\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}, \quad S S_{E}=\sum_{i=1}^{n}\left(\hat{y}_{i}-y_{i}\right)^{2} .
$$

The Analysis of Variance

- We did not consider the final unknown parameter in our regression model:

$$
Y=\beta_{0}+\beta_{1} x+\epsilon,
$$

namely, the $\operatorname{Var}(\epsilon)=\sigma^{2}$.

- We use the residuals $e_{i}=\hat{y}_{i}-y_{i}$, to obtain an estimate of σ^{2}.
- Specifically,

$$
S S_{E}=\sum_{i=1}^{n}\left(\hat{y}_{i}-y_{i}\right)^{2}
$$

and it can be shown that

$$
\mathbb{E}\left[S S_{E}\right]=(n-2) \sigma^{2}
$$

so:

$$
\hat{\sigma}^{2}=\frac{S S_{E}}{n-2} .
$$

The Analysis of Variance Identity

It holds that:

$$
S S_{T}=S S_{R}+S S_{E}
$$

where

$$
\begin{aligned}
& S S_{T}=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2} \\
& S S_{R}=\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2} \\
& S S_{E}=\sum_{i=1}^{n}\left(\hat{y}_{i}-y_{i}\right)^{2} .
\end{aligned}
$$

How good is my regression model?

A widely used measure for a regression model is the following ratio of sum of squares, which is often used to judge the adequacy of a regression model:

$$
R^{2}=\frac{S S_{R}}{S S_{T}}=1-\frac{S S_{E}}{S S_{T}},
$$

where

$$
\begin{aligned}
& S S_{T}=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2} \\
& S S_{R}=\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2} \\
& S S_{E}=\sum_{i=1}^{n}\left(\hat{y}_{i}-y_{i}\right)^{2}
\end{aligned}
$$

Properties of least square estimator

$$
\begin{aligned}
& \mathbb{E}\left[\hat{\beta}_{0}\right]=\beta_{0}, \quad \operatorname{Var}\left(\hat{\beta}_{0}\right)=\sigma^{2}\left[\frac{1}{n}+\frac{\bar{x}^{2}}{S_{X X}}\right], \\
& \mathbb{E}\left[\hat{\beta}_{1}\right]=\beta_{1}, \quad \operatorname{Var}\left(\hat{\beta}_{1}\right)=\frac{\sigma^{2}}{S_{X X}}
\end{aligned}
$$

Therefore, the estimated standard error of the slope and the estimated standard error of the intercept are:

$$
\begin{aligned}
& \operatorname{se}\left(\hat{\beta}_{0}\right)=\sqrt{\sigma^{2}\left[\frac{1}{n}+\frac{\bar{x}^{2}}{S_{X X}}\right]}, \\
& \operatorname{se}\left(\hat{\beta}_{1}\right)=\sqrt{\frac{\sigma^{2}}{S_{X X}}}
\end{aligned}
$$

Hypothesis tests in linear regression (1)

- Suppose we would like to test:

$$
H_{0}: \beta_{1}=\beta_{1,0}, \quad H_{1}: \beta_{1} \neq \beta_{1,0}
$$

- The Test Statistic for the Slope is

$$
T=\frac{\hat{\beta}_{1}-\beta_{1,0}}{\sqrt{\frac{\sigma^{2}}{S_{X x}}}}
$$

- Under H_{0}, the test statistic T follows a t-distribution with $n-2$ degree of freedom.

Hypothesis tests in linear regression (2)

- Suppose we would like to test:

$$
H_{0}: \beta_{0}=\beta_{0,0}, \quad H_{1}: \beta_{0} \neq \beta_{1,0} .
$$

- The Test Statistic for the intercept is

$$
T=\frac{\hat{\beta}_{0}-\beta_{0,0}}{\sqrt{\sigma^{2}\left[\frac{1}{n}+\frac{\bar{x}^{2}}{S_{x x}}\right]}}
$$

- Under H_{0}, the test statistic T follows a t-distribution with $n-2$ degree of freedom.

Hypothesis tests in linear regression

An important special case of the hypotheses is:

$$
H_{0}: \beta_{1}=0, \quad H_{1}: \beta_{1} \neq 0
$$

If we fail to reject $H_{0}: \beta_{1}=0$, this indicates that there is no
linear relationship between x and y.

The F distribution

- An alternative is to use the F statistic as is common in ANOVA (Analysis of Variance) (not covered fully in the course).
- Under H_{0}, the test statistic

$$
F=\frac{S S_{R} / 1}{S S_{E} /(n-2)}=\frac{M S_{R}}{M S_{E}}
$$

follows an F - distribution with 1 degree of freedom in the numerator and $n-2$ degrees of freedom in the denominator.

- Here,

$$
M S_{R}=S S_{R} / 1, \quad M S_{E}=S S_{E} /(n-2)
$$

Analysis of Variance Table for Testing Significance of Regression

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	$\boldsymbol{F}_{\mathbf{0}}$
Regression	$S S_{R}=\hat{\beta}_{1} S_{x y}$	1	$M S_{R}$	$M S_{R} / M S_{E}$
Error	$S S_{E}=S S_{T}-\hat{\beta}_{1} S_{x y}$	$n-2$	$M S_{E}$	
Total	$S S_{T}$	$n-1$		

Additional remarks

- There are also confidence intervals for $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ as well as prediction intervals for observations. We do not cover these formulas.
- To check the regression model assumptions, we plot the residuals e_{i} and check for:
- Normality,
- Constant variance, and,
- Independence

Logistic Regression

- Take the response variable, Y_{i} as a Bernoulli random variable.
- In this case notice that $\mathbb{E}[Y]=\mathbb{P}(Y=1)$.
- The logit response function has the form

$$
\mathbb{E}[Y]=\frac{e^{\beta_{0}+\beta_{1} x}}{1+e^{\beta_{0}+\beta_{1} x}}
$$

- Fitting a logistic regression model to data yields estimates of β_{0} and β_{1}.
- The following formula is called the odds:

$$
\frac{\mathbb{E}[Y]}{1-\mathbb{E}[Y]}=e^{\beta_{0}+\beta_{1} x}
$$

