UQ, STAT2201, 2017,
Lectures 3 and 4
Unit 3 – Probability Distributions.
Random Variables
A **random variable** X is a numerical (integer, real, complex, vector etc.) summary of the outcome of the random experiment.

The **range** or **support** of the random variable is the set of possible values that it may take. Random variables are usually denoted by capital letters.
A **discrete random variable** is an integer/real-valued random variable with a finite (or countably infinite) range.

A **continuous random variable** is a real valued random variable with an interval (either finite or infinite) of real numbers for its range.
Experiment \Rightarrow Outcome, ω, from the sample space.

$X(\omega) \equiv \text{Random Variable (function of the outcome)}.$

$P(X \in \mathcal{U}) = P\left(\{\omega \mid X(\omega) \in \mathcal{U}\}\right).$
Example: Dig a hole searching for gold.

\[\Omega \equiv \text{all possible outcomes (many ways to define this)} \]

\[X \equiv \text{Weight of gold found in grams} \]

\[P(X > 20) = P\left(\{ \omega \mid X(\omega) \in \mathcal{U} \} \right) \]

with \(\mathcal{U} = \{ x \mid x > 20 \} \).
Probability Distributions
The **probability distribution** of a random variable X is a description of the probabilities associated with the possible values of X.

There are several common alternative ways to describe the probability distribution, with some differences between discrete and continuous random variables.
While not the most popular in practice, a unified way to describe the distribution of any scalar valued random variable X (real or integer) is the **cumulative distribution function**,

$$F(x) = P(X \leq x).$$

It holds that

1. $0 \leq F(x) \leq 1$.
2. $\lim_{x \to -\infty} F(x) = 0$.
3. $\lim_{x \to \infty} F(x) = 1$.
4. If $x \leq y$, then $F(x) \leq F(y)$. That is, $F(\cdot)$ is non-decreasing.
Examples to understand:

\[F(x) = \begin{cases}
0, & x < -1, \\
0.3, & -1 \leq x < 1, \\
1, & 1 \leq x.
\end{cases} \]
Distributions are often summarised by numbers such as the **mean**, μ, **variance**, σ^2, or **moments**. These numbers, in general do not identify the distribution, but hint at the general location, spread and shape.

The **standard deviation** of X is $\sigma = \sqrt{\sigma^2}$ and is particularly useful when working with the Normal distribution.

More on these soon.
Discrete Random Variables
Given a discrete random variable X with possible values x_1, x_2, \ldots, x_n, the **probability mass function** of X is,

$$p(x) = P(X = x).$$

Note: In [MonRun2014] and many other sources, the notation used is $f(x)$ (as a pdf of a continuous random variable).
A probability mass function, $p(x)$ satisfies:

1. $p(x_i) \geq 0$.
2. $\sum_{i=1}^{n} p(x_i) = 1$.

The **cumulative distribution function** of a discrete random variable X, denoted as $F(x)$, is

$$F(x) = \sum_{x_i \leq x} p(x_i).$$
\(P(X = x_i) \) can be determined from the \textit{jump} at the value of \(x \). More specifically

\[
p(x_i) = P(X = x_i) = F(x_i) - \lim_{x \uparrow x_i} F(x_i).
\]
Back to the example:

\[
F(x) = \begin{cases}
0, & x < -1, \\
0.3, & -1 \leq x < 1, \\
1, & 1 \leq x.
\end{cases}
\]

What is the pmf?
The **mean** or **expected value** of a discrete random variable X, is

$$\mu = E(X) = \sum_{x} x \, p(x).$$
The expected value of $h(X)$ for some function $h(\cdot)$ is:

$$E \left[h(X) \right] = \sum_x h(x) p(x).$$
The k’th **moment** of X is,

$$E(X^k) = \sum_x x^k p(x).$$
The **variance** of X, is

$$\sigma^2 = V(X) = E(X - \mu)^2 = \sum_x (x - \mu)^2 p(x) = \sum_x x^2 p(x) - \mu^2.$$
The Discrete Uniform Distribution
A random variable X has a **discrete uniform distribution** if each of the n values in its range, x_1, x_2, \ldots, x_n, has equal probability. I.e.

$$p(x_i) = 1/n.$$
Suppose that X is a discrete uniform random variable on the consecutive integers $a, a + 1, a + 2, \ldots, b$, for $a \leq b$. The mean and variance of X are

$$E(X) = \frac{b + a}{2}$$
and
$$V(X) = \frac{(b - a + 1)^2 - 1}{12}.$$
To compute the mean and variance of the discrete uniform, use:

\[
\sum_{k=1}^{n} k = \frac{n(n + 1)}{2}, \quad \sum_{k=1}^{n} k^2 = \frac{n(n + 1)(2n + 1)}{6}
\]
\[E(X) = \sum_{k=a}^{b} k \frac{1}{b-a+1} = \]
\[E(X^2) = \sum_{k=a}^{b} k^2 \frac{1}{b-a+1} = \]
The Binomial Distribution
The setting of n independent and identical Bernoulli trials is as follows:

(1) There are n trials.
(1) The trials are independent.
(2) Each trial results in only two possible outcomes, labelled as “success” and “failure”.
(3) The probability of a success in each trial denoted as p is the same for all trials.
Binomial Example: Number of digs finding gold.

\[n = 5 \text{ digs in different spots.} \]

\[p = 0.1 \text{ chance of finding gold in each spot.} \]
The random variable X that equals the number of trials that result in a success is a **binomial random variable** with parameters $0 \leq p \leq 1$ and $n = 1, 2, \ldots$. The probability mass function of X is

$$p(x) = \binom{n}{x} p^x (1 - p)^{n-x}, \quad x = 0, 1, \ldots, n.$$
Useful to remember from algebra: the binomial expansion for constants a and b is

$$(a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^k b^{n-k}.$$
If X is a binominal random variable with parameters p and n, then,

\[E(X) = np \quad \text{and} \quad V(X) = np(1 - p). \]
Example (cont.): Number of digs finding gold \((n = 5, p = 0.1)\):
Continuous Random Variables
Given a continuous random variable \(X \), the **probability density function** (pdf) is a function, \(f(x) \) such that,

1. \(f(x) \geq 0. \)
2. \(f(x) = 0 \) for \(x \) not in the range.
3. \(\int_{-\infty}^{\infty} f(x) \, dx = 1. \)
4. For small \(\Delta x \), \(f(x) \Delta x \approx P(X \in [x, x + \Delta x]) \).
5. \(P(a \leq X \leq b) = \int_{a}^{b} f(x) \, dx = \text{area under } f(x) \text{ from } a \text{ to } b. \)
Given the pdf, \(f(x) \) we can get the cdf as follows:

\[
F(x) = P(X \leq x) = \int_{-\infty}^{x} f(u)du \quad \text{for} \quad -\infty < x < \infty.
\]
Given the cdf, $F(x)$ we can get the pdf:

$$f(x) = \frac{d}{dx} F(x).$$
The **mean** or **expected value** of a continuous random variable \(X \), is

\[
\mu = E(X) = \int_{-\infty}^{\infty} x \, f(x) \, dx.
\]

The **expected value** of \(h(X) \) for some function \(h(\cdot) \) is:

\[
E[h(X)] = \int_{-\infty}^{\infty} h(x) \, f(x) \, dx.
\]

The \(k'\)th **moment** of \(X \) is,

\[
E(X^k) = \int_{-\infty}^{\infty} x^k \, f(x) \, dx.
\]

The **variance** of \(X \), is

\[
\sigma^2 = V(X) = \int_{-\infty}^{\infty} (x - \mu)^2 \, f(x) \, dx = \int_{-\infty}^{\infty} x^2 \, f(x) \, dx - \mu^2.
\]
Continuous Uniform Distribution
A continuous random variable X with probability density function

$$f(x) = \frac{1}{b - a}, \quad a \leq x \leq b.$$

is a **continuous uniform random variable** or “uniform random variable” for short.
If X is a continuous uniform random variable over $a \leq x \leq b$, the **mean** and **variance** are:

$$
\mu = E(X) = \frac{a + b}{2} \quad \text{and} \quad \sigma^2 = V(X) = \frac{(b - a)^2}{12}.
$$
The Normal Distribution
A random variable X with probability density function

$$f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < \infty,$$

is a **normal random variable** with parameters μ where $-\infty < \mu < \infty$, and $\sigma > 0$. For this distribution, the parameters map directly to the mean and variance,

$$E(X) = \mu \quad \text{and} \quad V(X) = \sigma^2.$$

The notation $N(\mu, \sigma^2)$ is used to denote the distribution. Note that some authors and software packages use σ for the second parameter and not σ^2.
A normal random variable with a mean and variance of:

\[\mu = 0 \quad \text{and} \quad \sigma^2 = 1 \]

is called a **standard normal random variable** and is denoted as \(Z \). The cumulative distribution function of a standard normal random variable is denoted as

\[\Phi(z) = F_Z(z) = P(Z \leq z), \]

and is tabulated in a table.
It is very common to compute $P(a < X < b)$ for $X \sim N(\mu, \sigma^2)$. This is the typical way:

$$P(a < X < b) = P(a - \mu < X - \mu < b - \mu)$$

$$= P\left(\frac{a - \mu}{\sigma} < \frac{X - \mu}{\sigma} < \frac{b - \mu}{\sigma}\right)$$

$$= P\left(\frac{a - \mu}{\sigma} < Z < \frac{b - \mu}{\sigma}\right)$$

$$= \Phi\left(\frac{b - \mu}{\sigma}\right) - \Phi\left(\frac{a - \mu}{\sigma}\right).$$

We get:

$$F_X(b) - F_X(a) = F_Z\left(\frac{b - \mu}{\sigma}\right) - F_Z\left(\frac{a - \mu}{\sigma}\right).$$
The Exponential Distribution
The **exponential distribution** with parameter $\lambda > 0$ is given by the **survival function**,

$$
\bar{F}(x) = 1 - F(x) = P(X > x) = e^{-\lambda x}.
$$

The random variable X represents the distance between successive events from a Poisson process with mean number of events per unit interval $\lambda > 0$.
The probability density function of X is

$$f(x) = \lambda e^{-\lambda x} \quad \text{for} \quad 0 \leq x < \infty.$$

Note that sometimes a different parameterisation, $\theta = 1/\lambda$ is used (e.g. in the Julia Distributions package).
The **mean** and **variance** are:

\[
\mu = E(X) = \frac{1}{\lambda} \quad \text{and} \quad \sigma^2 = V(X) = \frac{1}{\lambda^2}
\]
The exponential distribution is the only continuous distribution with range \([0, \infty)\) exhibiting the **lack of memory property**. For an exponential random variable \(X\),

\[
P(X > t + s \mid X > t) = P(X > s).
\]
Monte Carlo Random Variable Generation
Monte Carlo simulation makes use of methods to transform a uniform random variable in a manner where it follows an arbitrary given distribution. One example of this is if $U \sim \text{Uniform}(0, 1)$ then $X = -\frac{1}{\lambda} \log(U)$ is exponentially distributed with parameter λ.