UQ, STAT2201, 2017,
Lecture 6
Unit 6 – Statistical Inference Ideas.
Statistical Inference is the process of forming judgements about the parameters of a population typically on the basis of random sampling.
The random variables X_1, X_2, \ldots, X_n are an (i.i.d.) random sample of size n if

(a) the X_i’s are independent random variables and
(b) every X_i has the same probability distribution.

A statistic is any function of the observations in a random sample, and the probability distribution of a statistic is called the sampling distribution.
Any function of the observation, or any statistic, is also a random variable. We call the probability distribution of a statistic a **sampling distribution**. A **point estimate** of some population parameter θ is a single numerical value $\hat{\theta}$ of a statistic $\hat{\Theta}$. The statistic $\hat{\Theta}$ is called the **point estimator**.
The most common statistic we consider is the sample mean, \bar{X}, with a given value denoted by \bar{x}. As an estimator, the sample mean is an estimator of the population mean, μ.
The Central Limit Theorem
Central Limit Theorem (for sample means):

If X_1, X_2, \ldots, X_n is a random sample of size n taken from a population with mean μ and finite variance σ^2 and if \bar{X} is the sample mean, the limiting form of the distribution of

$$Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}}$$

as $n \to \infty$, is the standard normal distribution.

This implies that \bar{X} is approximately normally distributed with mean μ and standard deviation σ/\sqrt{n}.
The **standard error** of \bar{X} is given by σ/\sqrt{n}. In most practical situations σ is not known but rather estimated in this case, the **estimated standard error**, (denoted in typical computer output as "SE"), is s/\sqrt{n} where the sample standard deviation s is the point estimator for the population standard deviation,

\[
s = \sqrt{\frac{\sum_{i=1}^{n} x_i^2 - n \bar{x}^2}{n - 1}}.
\]
Central Limit Theorem (for sums):

Manipulate the central limit theorem (for sample means and use \(\sum_{i=1}^{n} X_i = n \bar{X}\). This yields,

\[
Z = \frac{\sum_{i=1}^{n} X_i - n \mu}{\sqrt{n\sigma^2}},
\]

which follows a standard normal distribution as \(n \to \infty\).

This implies that \(\sum_{i=1}^{n} X_i\) is approximately normally distributed with mean \(n \mu\) and variance \(n \sigma^2\).
Confidence Intervals
Knowing the sampling distribution (or the approximate sampling distribution) of a statistic is the key for the two main tools of statistical inference that we study:

(a) **Confidence intervals** – a method for yielding error bounds on point estimates.
(b) **Hypothesis testing** – a methodology for making conclusions about population parameters.
The formulas for most of the statistical procedures use **quantiles of the sampling distribution**. When the distribution is \(N(0, 1) \) (standard normal), the \(\alpha \)'s quantile is denoted \(z_{\alpha} \) and satisfies:

\[
\alpha = \int_{-\infty}^{z_{\alpha}} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \, dx.
\]

A common value to use for \(\alpha \) is 0.05 and in procedures the expressions \(z_{1-\alpha} \) or \(z_{1-\alpha/2} \) appear. Note that in this case \(z_{1-\alpha/2} = 1.96 \approx 2 \).
A **confidence interval** estimate for μ is an interval of the form $l \leq \mu \leq u$, where the end-points l and u are computed from the sample data. Because different samples will produce different values of l and u, these end points are values of random variables L and U, respectively. Suppose that

$$P(L \leq \mu \leq U) = 1 - \alpha.$$

The resulting **confidence interval** for μ is

$$l \leq \mu \leq u.$$

The end-points or bounds l and u are called the **lower- and upper-confidence limits** (bounds), respectively, and $1 - \alpha$ is called the **confidence level**.
If \(\bar{x} \) is the sample mean of a random sample of size \(n \) from a normal population with known variance \(\sigma^2 \), a 100(1 - \(\alpha \))% confidence interval on \(\mu \) is given by

\[
\bar{x} - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{x} + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}.
\]

Note that it is roughly of the form,

\[
\bar{x} - 2 \text{ SE} \leq \mu \leq \bar{x} + 2 \text{ SE}.
\]

Learn how to do back of the envelope calculations!
Confidence interval formulas give insight into the **required sample size**: If \bar{x} is used as an estimate of μ, we can be $100(1 - \alpha)\%$ confident that the error $|\bar{x} - \mu|$ will not exceed a specified amount Δ when the sample size is not smaller than

$$n = \left(\frac{z_{1-\alpha/2} \sigma}{\Delta}\right)^2.$$
Hypothesis Testing
A statistical hypothesis is a statement about the parameters of one or more populations.

The null hypothesis, denoted H_0 is the claim that is initially assumed to be true based on previous knowledge.

The alternative hypothesis, denoted H_1 is a claim that contradicts the null hypothesis.
For some arbitrary value μ_0, a **two-sided alternative hypothesis** is expressed as:

$$H_0 : \mu = \mu_0, \quad H_1 : \mu \neq \mu_0$$

A **one-sided alternative hypothesis** is expressed as:

$$H_0 : \mu = \mu_0, \quad H_1 : \mu < \mu_0$$

or

$$H_0 : \mu = \mu_0, \quad H_1 : \mu > \mu_0.$$
The standard scientific research use of hypothesis is to “hope to reject” H_0 so as to have statistical evidence for the validity of H_1.
An hypothesis test is based on a decision rule that is a function of the test statistic. For example: Reject H_0 if the test statistic is below a specified threshold, otherwise don’t reject.
Rejecting the null hypothesis H_0 when it is true is defined as a type I error. Failing to reject the null hypothesis H_0 when it is false is defined as a type II error.
<table>
<thead>
<tr>
<th></th>
<th>H_0 Is True</th>
<th>H_0 Is False</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fail to reject H_0:</td>
<td>No error</td>
<td>Type II error</td>
</tr>
<tr>
<td>Reject H_0:</td>
<td>Type I error</td>
<td>No error</td>
</tr>
</tbody>
</table>

$$\alpha = P(\text{type I error}) = P(\text{reject } H_0 \mid H_0 \text{ is true}).$$

$$\beta = P(\text{type II error}) = P(\text{fail to reject } H_0 \mid H_0 \text{ is false}).$$
The **power** of a statistical test is the probability of rejecting the null hypothesis H_0 when the alternative hypothesis is true.

Desire: α is low and power $(1 - \beta)$ as high as can be.
Simple Hypothesis Tests
A typical example of a simple hypothesis test has

\[H_0 : \mu = \mu_0, \quad H_1 : \mu = \mu_1, \]

where \(\mu_0 \) and \(\mu_1 \) are some specified values for the population mean. This test isn’t typically practical but is useful for understanding the concepts at hand.

Assuming that \(\mu_0 < \mu_1 \) and setting a threshold, \(\tau \), reject \(H_0 \) if the \(\bar{x} > \tau \), otherwise don’t reject.
Explicit calculation of the relationships of τ, α, β, n, σ, μ_0 and μ_1 is possible in this case.
Practical Hypothesis Tests (focus of Units 7,8 of the course)
In most hypothesis tests used in practice (and in this course), a specified level of type I error, \(\alpha \) is predetermined (e.g. \(\alpha = 0.05 \)) and the type II error is not directly specified.

The probability of making a type II error \(\beta \) increases (power decreases) rapidly as the true value of \(\mu \) approaches the hypothesized value.

The probability of making a type II error also depends on the sample size \(n \) - increasing the sample size results in a decrease in the probability of a type II error.

The population (or natural) variability (e.g. described by \(\sigma \)) also affects the power.
The **P-value** is the smallest level of significance that would lead to rejection of the null hypothesis H_0 with the given data. That is, the P-value is based on the data. It is computed by considering the location of the test statistic under the sampling distribution based on H_0.
It is customary to consider the test statistic (and the data) significant when the null hypothesis H_0 is rejected; therefore, we may think of the P-value as the smallest α at which the data are significant. In other words, the P-value is the observed significance level.
Clearly, the P-value provides a measure of the credibility of the null hypothesis. Computing the exact P-value for a statistical test is not always doable by hand.

It is typical to report the P-value in studies where H_0 was rejected (and new scientific claims were made). Typical (“convincing”) values can be of the order 0.001.
A General Procedure for Hypothesis Tests is

(1) **Parameter of interest:** From the problem context, identify the parameter of interest.

(2) **Null hypothesis,** H_0: State the null hypothesis, H_0.

(3) **Alternative hypothesis,** H_1: Specify an appropriate alternative hypothesis, H_1.

(4) **Test statistic:** Determine an appropriate test statistic.

(5) **Reject H_0 if:** State the rejection criteria for the null hypothesis.

(6) **Computations:** Compute any necessary sample quantities, substitute these into the equation for the test statistic, and compute the value.

(7) **Draw conclusions:** Decide whether or not H_0 should be rejected and report that in the problem context.