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Unit 6 – Statistical Inference Ideas.

1



Statistical Inference is the process of forming judgements about
the parameters of a population typically on the basis of random
sampling.
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The random variables X1,X2, . . . ,Xn are an (i.i.d.) random
sample of size n if

(a) the Xi ’s are independent random variables and

(b) every Xi has the same probability distribution.

A statistic is any function of the observations in a random sample,
and the probability distribution of a statistic is called the sampling
distribution.
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Any function of the observation, or any statistic, is also a random
variable. We call the probability distribution of a statistic a
sampling distribution. A point estimate of some population
parameter θ is a single numerical value θ̂ of a statistic Θ̂. The
statistic Θ̂ is called the point estimator.
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The most common statistic we consider is the sample mean, X ,
with a given value denoted by x . As an estimator, the sample
mean is an estimator of the population mean, µ.
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The Central Limit Theorem

6



Central Limit Theorem (for sample means):

If X1,X2, . . . ,Xn is a random sample of size n taken from a
population with mean µ and finite variance σ2 and if X is the
sample mean, the limiting form of the distribution of

Z =
X − µ
σ/
√
n

as n→∞, is the standard normal distribution.

This implies that X is approximately normally distributed with
mean µ and standard deviation σ/

√
n.
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The standard error of X is given by σ/
√
n. In most practical

situations σ is not known but rather estimated in this case, the
estimated standard error, (denoted in typical computer output
as ”SE”), is s/

√
n where the sample standard deviation s is the

point estimator for the population standard deviation,

s =

√√√√√ n∑
i=1

x2i − n x2

n − 1
.
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Central Limit Theorem (for sums):

Manipulate the central limit theorem (for sample means and use∑n
i=1 Xi = nX . This yields,

Z =

∑n
i=1 Xi − n µ√

nσ2
,

which follows a standard normal distribution as n→∞.

This implies that
∑n

i=1 Xi is approximately normally distributed
with mean n µ and variance n σ2.
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Confidence Intervals

10



Knowing the sampling distribution (or the approximate sampling
distribution) of a statistic is the key for the two main tools of
statistical inference that we study:

(a) Confidence intervals – a method for yielding error bounds on
point estimates.

(b) Hypothesis testing – a methodology for making conclusions
about population parameters.
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The formulas for most of the statistical procedures use quantiles
of the sampling distribution. When the distribution is N(0, 1)
(standard normal), the α’s quantile is denoted zα and satisfies:

α =

∫ zα

−∞

1√
2π

e
−x2

2 dx .

A common value to use for α is 0.05 and in procedures the
expressions z1−α or z1−α/2 appear. Note that in this case
z1−α/2 = 1.96 ≈ 2.
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A confidence interval estimate for µ is an interval of the form
l ≤ µ ≤ u, where the end-points l and u are computed from the
sample data. Because different samples will produce different
values of l and u, these end points are values of random variables
L and U, respectively. Suppose that

P
(
L ≤ µ ≤ U

)
= 1− α.

The resulting confidence interval for µ is

l ≤ µ ≤ u.

The end-points or bounds l and u are called the lower- and
upper-confidence limits (bounds), respectively, and 1− α is
called the confidence level.
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If x is the sample mean of a random sample of size n from a
normal population with known variance σ2, a 100(1− α)%
confidence interval on µ is given by

x − z1−α/2
σ√
n
≤ µ ≤ x + z1−α/2

σ√
n
.

Note that it is roughly of the form,

x − 2 SE ≤ µ ≤ x + 2 SE.

Learn how to do back of the envelope calculations!
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Confidence interval formulas give insight into the required sample
size: If x is used as an estimate of µ, we can be 100(1− α)%
confident that the error |x − µ| will not exceed a specified amount
∆ when the sample size is not smaller than

n =

(
z1−α/2 σ

∆

)2

.
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Hypothesis Testing
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A statistical hypothesis is a statement about the parameters of
one or more populations.

The null hypothesis, denoted H0 is the claim that is initially
assumed to be true based on previous knowledge.

The alternative hypothesis, denoted H1 is a claim that
contradicts the null hypothesis.
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For some arbitrary value µ0, a two-sided alternative hypothesis
is expressed as:

H0 : µ = µ0, H1 : µ 6= µ0

A one-sided alternative hypothesis is expressed as:

H0 : µ = µ0, H1 : µ < µ0

or
H0 : µ = µ0, H1 : µ > µ0.
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The standard scientific research use of hypothesis is to “hope to
reject” H0 so as to have statistical evidence for the validity of H1.
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An hypothesis test is based on a decision rule that is a function of
the test statistic. For example: Reject H0 if the test statistic is
below a specified threshold, otherwise don’t reject.
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Rejecting the null hypothesis H0 when it is true is defined as a
type I error. Failing to reject the null hypothesis H0 when it is
false is defined as a type II error.
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H0 Is True H0 Is False

Fail to reject H0: No error Type II error

Reject H0: Type I error No error

α = P(type I error) = P(reject H0

∣∣ H0 is true).

β = P(type II error) = P(fail to reject H0

∣∣ H0 is false ).
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The power of a statistical test is the probability of rejecting the
null hypothesis H0 when the alternative hypothesis is true.

Desire: α is low and power (1− β) as high as can be.
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Simple Hypothesis Tests

24



A typical example of a simple hypothesis test has

H0 : µ = µ0, H1 : µ = µ1,

where µ0 and µ1 are some specified values for the population
mean. This test isn’t typically practical but is useful for
understanding the concepts at hand.

Assuming that µ0 < µ1 and setting a threshold, τ , reject H0 if the
x > τ , otherwise don’t reject.
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Explicit calculation of the relationships of τ , α, β, n, σ, µ0 and µ1
is possible in this case.
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Practical Hypothesis Tests (focus of Units 7,8 of the course)
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In most hypothesis tests used in practice (and in this course), a
specified level of type I error, α is predetermined (e.g. α = 0.05)
and the type II error is not directly specified.

The probability of making a type II error β increases (power
decreases) rapidly as the true value of µ approaches the
hypothesized value.

The probability of making a type II error also depends on the
sample size n - increasing the sample size results in a decrease in
the probability of a type II error.

The population (or natural) variability (e.g. described by σ) also
affects the power.
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The P-value is the smallest level of significance that would lead to
rejection of the null hypothesis H0 with the given data. That is,
the P-value is based on the data. It is computed by considering the
location of the test statistic under the sampling distribution based
on H0.
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It is customary to consider the test statistic (and the data)
significant when the null hypothesis H0 is rejected; therefore, we
may think of the P-value as the smallest α at which the data are
significant. In other words, the P-value is the observed
significance level.
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Clearly, the P-value provides a measure of the credibility of the null
hypothesis. Computing the exact P-value for a statistical test is
not always doable by hand.

It is typical to report the P-value in studies where H0 was rejected
(and new scientific claims were made). Typical (“convincing”)
values can be of the order 0.001.
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A General Procedure for Hypothesis Tests is

(1) Parameter of interest: From the problem context, identify
the parameter of interest.

(2) Null hypothesis, H0: State the null hypothesis, H0.

(3) Alternative hypothesis, H1: Specify an appropriate
alternative hypothesis, H1.

(4) Test statistic: Determine an appropriate test statistic.

(5) Reject H0 if: State the rejection criteria for the null
hypothesis.

(6) Computations: Compute any necessary sample quantities,
substitute these into the equation for the test statistic, and
compute the value.

(7) Draw conclusions: Decide whether or not H0 should be
rejected and report that in the problem context.
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