UQ, STAT2201, 2017, Lecture 6 Unit 6 – Statistical Inference Ideas. **Statistical Inference** is the process of forming judgements about the **parameters of a population** typically on the basis of **random sampling**.

The random variables $X_1, X_2, ..., X_n$ are an (i.i.d.) random sample of size *n* if

(a) the X_i's are independent random variables and
(b) every X_i has the same probability distribution.

A **statistic** is any function of the observations in a random sample, and the probability distribution of a statistic is called the **sampling distribution**.

Any function of the observation, or any **statistic**, is also a random variable. We call the probability distribution of a statistic a **sampling distribution**. A **point estimate** of some population parameter θ is a single numerical value $\hat{\theta}$ of a statistic $\hat{\Theta}$. The statistic $\hat{\Theta}$ is called the **point estimator**.

The most common statistic we consider is the **sample mean**, \overline{X} , with a given value denoted by \overline{x} . As an estimator, the sample mean is an estimator of the population mean, μ .

The Central Limit Theorem

Central Limit Theorem (for sample means):

If X_1, X_2, \ldots, X_n is a random sample of size *n* taken from a population with mean μ and finite variance σ^2 and if \overline{X} is the sample mean, the limiting form of the distribution of

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$$

as $n \to \infty$, is the standard normal distribution.

This implies that \overline{X} is approximately normally distributed with mean μ and standard deviation σ/\sqrt{n} .

The **standard error** of \overline{X} is given by σ/\sqrt{n} . In most practical situations σ is not known but rather estimated in this case, the **estimated standard error**, (denoted in typical computer output as "SE"), is s/\sqrt{n} where the sample standard deviation s is the point estimator for the population standard deviation,

$$s = \sqrt{\frac{\sum_{i=1}^{n} x_i^2 - n \overline{x}^2}{n-1}}$$

Central Limit Theorem (for sums):

Manipulate the central limit theorem (for sample means and use $\sum_{i=1}^{n} X_i = n\overline{X}$. This yields,

$$Z = \frac{\sum_{i=1}^{n} X_i - n \,\mu}{\sqrt{n\sigma^2}},$$

which follows a standard normal distribution as $n \to \infty$.

This implies that $\sum_{i=1}^{n} X_i$ is approximately normally distributed with mean $n \mu$ and variance $n \sigma^2$.

Confidence Intervals

Knowing the sampling distribution (or the approximate sampling distribution) of a statistic is the key for the two main tools of statistical inference that we study:

- (a) **Confidence intervals** a method for yielding error bounds on **point estimates**.
- (b) **Hypothesis testing** a methodology for making conclusions about population parameters.

The formulas for most of the statistical procedures use **quantiles** of the sampling distribution. When the distribution is N(0, 1)(standard normal), the α 's quantile is denoted z_{α} and satisfies:

$$\alpha = \int_{-\infty}^{z_{\alpha}} \frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}} dx$$

A common value to use for α is 0.05 and in procedures the expressions $z_{1-\alpha}$ or $z_{1-\alpha/2}$ appear. Note that in this case $z_{1-\alpha/2} = 1.96 \approx 2$.

A **confidence interval** estimate for μ is an interval of the form $l \le \mu \le u$, where the end-points l and u are computed from the sample data. Because different samples will produce different values of l and u, these end points are values of random variables L and U, respectively. Suppose that

$$P(L \le \mu \le U) = 1 - \alpha.$$

The resulting **confidence interval** for μ is

$$l \leq \mu \leq u$$
.

The end-points or bounds I and u are called the **lower**- and **upper-confidence limits** (bounds), respectively, and $1 - \alpha$ is called the **confidence level**.

If \bar{x} is the sample mean of a random sample of size *n* from a normal population with known variance σ^2 , a $100(1 - \alpha)\%$ **confidence interval** on μ is given by

$$\bar{x} - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{x} + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}$$

Note that it is roughly of the form,

$$\overline{x} - 2 \text{ SE} \leq \mu \leq \overline{x} + 2 \text{ SE}.$$

Learn how to do back of the envelope calculations!

Confidence interval formulas give insight into the **required sample** size: If \bar{x} is used as an estimate of μ , we can be $100(1 - \alpha)\%$ confident that the error $|\bar{x} - \mu|$ will not exceed a specified amount Δ when the sample size is not smaller than

$$n = \left(\frac{z_{1-\alpha/2} \sigma}{\Delta}\right)^2.$$

Hypothesis Testing

A **statistical hypothesis** is a statement about the parameters of one or more populations.

The **null hypothesis**, denoted H_0 is the claim that is initially assumed to be true based on previous knowledge.

The **alternative hypothesis**, denoted H_1 is a claim that contradicts the null hypothesis.

For some arbitrary value μ_0 , a **two-sided alternative hypothesis** is expressed as:

$$H_0: \mu = \mu_0, \qquad H_1: \mu \neq \mu_0$$

A one-sided alternative hypothesis is expressed as:

$$H_0: \mu = \mu_0, \qquad H_1: \mu < \mu_0$$

or

$$H_0: \mu = \mu_0, \qquad H_1: \mu > \mu_0.$$

The standard scientific research use of hypothesis is to "hope to reject" H_0 so as to have statistical evidence for the validity of H_1 .

An hypothesis test is based on a **decision rule** that is a function of the **test statistic**. For example: Reject H_0 if the test statistic is below a specified threshold, otherwise don't reject.

Rejecting the null hypothesis H_0 when it is true is defined as a **type I error**. Failing to reject the null hypothesis H_0 when it is false is defined as a **type II error**.

	H ₀ Is True	H ₀ Is False
Fail to reject H ₀ :	No error	Type II error
Reject H ₀ :	Type I error	No error

$$\alpha = P(\text{type I error}) = P(\text{reject } H_0 \mid H_0 \text{ is true}).$$

 $\beta = P(\text{type II error}) = P(\text{fail to reject } H_0 \mid H_0 \text{ is false }).$

The **power** of a statistical test is the probability of rejecting the null hypothesis H_0 when the alternative hypothesis is true.

Desire: α is low and power $(1 - \beta)$ as high as can be.

Simple Hypothesis Tests

A typical example of a simple hypothesis test has

$$H_0: \mu = \mu_0, \qquad H_1: \mu = \mu_1,$$

where μ_0 and μ_1 are some specified values for the population mean. This test isn't typically practical but is useful for understanding the concepts at hand.

Assuming that $\mu_0 < \mu_1$ and setting a threshold, τ , reject H_0 if the $\overline{x} > \tau$, otherwise don't reject.

Explicit calculation of the relationships of τ , α , β , *n*, σ , μ_0 and μ_1 is possible in this case.

Practical Hypothesis Tests (focus of Units 7,8 of the course)

In most hypothesis tests used in practice (and in this course), a specified level of type *I* error, α is predetermined (e.g. $\alpha = 0.05$) and the type II error is not directly specified.

The probability of making a type II error β increases (power decreases) rapidly as the true value of μ approaches the hypothesized value.

The probability of making a type II error also depends on the sample size n - increasing the sample size results in a decrease in the probability of a type II error.

The population (or natural) variability (e.g. described by σ) also affects the power.

The **P-value** is the smallest level of significance that would lead to rejection of the null hypothesis H_0 with the given data. That is, the P-value is based on the data. It is computed by considering the location of the test statistic under the sampling distribution based on H_0 .

It is customary to consider the test statistic (and the data) significant when the null hypothesis H_0 is rejected; therefore, we may think of the *P*-value as the smallest α at which the data are significant. In other words, the *P*-value is the **observed** significance level.

Clearly, the *P*-value provides a measure of the credibility of the null hypothesis. Computing the exact *P*-value for a statistical test is not always doable by hand.

It is typical to report the P-value in studies where H_0 was rejected (and new scientific claims were made). Typical ("convincing") values can be of the order 0.001.

A General Procedure for Hypothesis Tests is

- (1) **Parameter of interest:** From the problem context, identify the parameter of interest.
- (2) **Null hypothesis,** H_0 : State the null hypothesis, H_0 .
- (3) Alternative hypothesis, H_1 : Specify an appropriate alternative hypothesis, H_1 .
- (4) **Test statistic:** Determine an appropriate test statistic.
- (5) Reject H₀ if: State the rejection criteria for the null hypothesis.
- (6) **Computations:** Compute any necessary sample quantities, substitute these into the equation for the test statistic, and compute the value.
- (7) **Draw conclusions:** Decide whether or not H_0 should be rejected and report that in the problem context.