UQ, STAT2201, 2017,
Lecture 7.
Unit 7 – Single Sample Inference.
Setup: A sample x_1, \ldots, x_n (collected values).

Model: An i.i.d. sequence of random variables, X_1, \ldots, X_n.

Parameter at question: The population mean, $\mu = E[X_i]$.

Point estimate: \bar{x} (described by the random variable \bar{X}).
Goal: Devise hypothesis tests and confidence intervals for μ.

Distinguish between the two cases:

- Unrealistic (but simpler): The population variance, σ^2, is known.
- More realistic: The variance is not known and estimated by the sample variance, s^2.
For very small samples, the results we present are valid only if the population is normally distributed.

But for non-small samples (e.g. $n > 20$, although there isn’t a clear rule), the central limit theorem provides a good approximation and the results are approximately correct.
Testing Hypotheses on the Mean, Variance Known (Z-Tests)

Model: \(X_i \sim N(\mu, \sigma^2) \) with \(\mu \) unknown but \(\sigma^2 \) known.

Null hypothesis: \(H_0: \mu = \mu_0 \).

Test statistic:
\[
z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}, \quad Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}.
\]

<table>
<thead>
<tr>
<th>Alternative Hypotheses</th>
<th>(P)-value</th>
<th>Rejection Criterion for Fixed-Level Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H_1: \mu \neq \mu_0)</td>
<td>(P = 2[1 - \Phi(</td>
<td>z</td>
</tr>
<tr>
<td>(H_1: \mu > \mu_0)</td>
<td>(P = 1 - \Phi(z))</td>
<td>(z > z_{1-\alpha})</td>
</tr>
<tr>
<td>(H_1: \mu < \mu_0)</td>
<td>(P = \Phi(z))</td>
<td>(z < z_{\alpha})</td>
</tr>
</tbody>
</table>
For $H_1 : \mu \neq \mu_0$, a procedure identical to the preceding fixed significance level test is:

$$\text{Reject } H_0 : \mu = \mu_0 \quad \text{if either} \quad \bar{x} < a \text{ or } \bar{x} > b$$

where

$$a = \mu_0 - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} \quad \text{and} \quad b = \mu_0 + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}.$$

Compare with the confidence interval formula:

$$\bar{x} - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{x} + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}.$$
If H_0 is not true and H_1 holds with a specific value of $\mu = \mu_1$, then it is possible to compute the probability of type II error, β.
In the (very realistic) case where σ^2 is not known, but rather estimated by S^2, we would like to replace the test statistic, Z, above with,

$$T = \frac{\bar{X} - \mu_0}{S/\sqrt{n}},$$

but in general, T no longer follows a Normal distribution.
Under $H_0: \mu = \mu_0$, and for moderate or large samples (e.g. $n > 100$) this statistic is approximately Normally distributed just like above. In this case, the procedures above work well.
But for smaller samples, the distribution of T is no longer Normally distributed. Nevertheless, it follows a well known and very famous distribution of classical statistics: **The Student-t Distribution**.

The probability density function of a Student-t Distribution with a parameter k, referred to as **degrees of freedom**, is,

$$f(x) = \frac{\Gamma\left(\frac{k+1}{2}\right)}{\sqrt{\pi}k\Gamma\left(\frac{k}{2}\right)} \cdot \frac{1}{\left[\left(\frac{x^2}{k}\right) + 1\right]^{(k+1)/2}} \quad -\infty < x < \infty,$$

where $\Gamma(\cdot)$ is the Gamma-function. It is a symmetric distribution about 0 and as $k \to \infty$ it approaches a standard Normal distribution.
Why is the t-distribution so useful in (small sample) elementary statistics?

Claim: Let X_1, X_2, \ldots, X_n be an i.i.d. sample from a Normal distribution with mean μ and variance σ^2. The random variable, T has a t distribution with $n - 1$ degrees of freedom.
Knowing the distribution of T (and noticing it depends on the sample size, n), allows to construct hypothesis tests and confidence intervals when σ^2 is not known.

The construction is analogous to the Z-tests and confidence intervals.
If \bar{x} and s are the mean and standard deviation of a random sample from a normal distribution with unknown variance σ^2, a $100(1 - \alpha)\%$ confidence interval on μ is given by

$$\bar{x} - t_{1-\alpha/2,n-1} \frac{s}{\sqrt{n}} \leq \mu \leq \bar{x} + t_{1-\alpha/2,n-1} \frac{s}{\sqrt{n}}$$

where $t_{1-\alpha/2,n-1}$ is the $1 - \alpha/2$ quantile of the t distribution with $n - 1$ degrees of freedom.
A related concept is a 100(1 − α)% prediction interval (PI) on a single future observation from a normal distribution is given by

$$\bar{x} - t_{1-\alpha/2,n-1}s\sqrt{1 + \frac{1}{n}} \leq X_{n+1} \leq \bar{x} + t_{1-\alpha/2,n-1}s\sqrt{1 + \frac{1}{n}}.$$

This is the range where we expect the $n + 1$ observation to be, after observing n observations and computing \bar{x} and s.
Testing Hypotheses on the Mean, Variance Unknown (T-Tests)

Model: \(X_i \sim N(\mu, \sigma^2) \) with both \(\mu \) and \(\sigma^2 \) unknown

Null hypothesis: \(H_0 : \mu = \mu_0 \).

Test statistic: \(t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}} \), \(T = \frac{\bar{X} - \mu_0}{S/\sqrt{n}} \).

<table>
<thead>
<tr>
<th>Alternative Hypotheses</th>
<th>P-value</th>
<th>Rejection Criterion for Fixed-Level Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H_1 : \mu \neq \mu_0)</td>
<td>(P = 2[1 - F_{n-1}(</td>
<td>t</td>
</tr>
<tr>
<td>(H_1 : \mu > \mu_0)</td>
<td>(P = 1 - F_{n-1}(t))</td>
<td>(t > t_{1-\alpha, n-1})</td>
</tr>
<tr>
<td>(H_1 : \mu < \mu_0)</td>
<td>(P = F_{n-1}(t))</td>
<td>(t < t_{\alpha, n-1})</td>
</tr>
</tbody>
</table>
In the P-value calculation, $F_{n-1}(\cdot)$ denotes the CDF of the t-distribution with $n - 1$ degrees of freedom.

As opposed to $\Phi(\cdot)$, the CDF of t is not tabulated in standard tables. So to calculate P-values, we use software (or make educated guesses using quantiles).