> UQ, STAT2201, 2017, Lecture 8 (and part of 9). Unit 8 - Two Sample Inference. Unit 9 - Linear Regression.

Unit 8 - Two Sample Inference

Sample $x_{1}, \ldots, x_{n_{1}}$ modelled as an i.i.d. sequence of random variables, $X_{1}, \ldots, X_{n_{1}}$ and another sample $y_{1}, \ldots, y_{n_{2}}$ modelled by an i.i.d. sequence of random variables, $Y_{1}, \ldots, Y_{n_{1}}$.

Observations, x_{i} and y_{i} (for same i) are not paired. Possible that $n_{1} \neq n_{2}$ (unequal sample sizes).

Model: $X i \stackrel{i . i . d .}{\sim} N\left(\mu_{1}, \sigma_{1}^{2}\right), \quad Y_{i} \stackrel{\text { i.i.d. }}{\sim} N\left(\mu_{2}, \sigma_{2}^{2}\right)$.
Two Variations:
(i) equal variances: $\sigma_{1}^{2}=\sigma_{2}^{2}:=\sigma^{2}$.
(ii) unequal variances: $\sigma_{2}^{2} \neq \sigma_{2}^{2}$.

Focus on difference in means,

$$
\Delta_{\mu}:=\mu_{1}-\mu_{2}=E\left[X_{i}\right]-E\left[Y_{i}\right]
$$

Ask if

$$
\Delta_{\mu}(=,<,>) 0
$$

i.e. if $\mu_{1}(=,<,>) \mu_{2}$.

But we can also replace the " 0 " with other values, e.g. $\mu_{1}-\mu_{2}=\Delta_{0}$ for some Δ_{0}.

A point estimator for Δ_{μ} is $\bar{X}-\bar{Y}$ (difference in sample means).
The estimate from the data is denoted by $\bar{x}-\bar{y}$ (the difference in the individual sample means), with,

$$
\bar{x}=\frac{1}{n_{1}} \sum_{i=1}^{n_{1}} x_{i}, \quad \bar{y}=\frac{1}{n_{2}} \sum_{i=1}^{n_{2}} y_{i}
$$

In the case (ii) of unequal variances: Point estimates for σ_{1}^{2} and σ_{2}^{2} are the individual sample variances,

$$
s_{1}^{2}=\frac{1}{n_{1}-1} \sum_{i=1}^{n_{1}}\left(x_{i}-\bar{x}\right)^{2}, \quad s_{2}^{2}=\frac{1}{n_{2}-2} \sum_{i=1}^{n_{2}}\left(y_{i}-\bar{y}\right)^{2} .
$$

In case (i) of equal variances, both S_{1}^{2} and S_{2}^{2} estimate σ^{2}. In this case, a more reliable estimate can be obtained via the pooled variance estimator

$$
S_{p}^{2}=\frac{\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}}{n_{1}+n_{2}-2}
$$

In case (i), under H_{0} :

$$
T=\frac{\bar{X}-\bar{Y}-\Delta_{0}}{S_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} \sim t\left(n_{1}+n_{2}-2\right)
$$

The T test statistic follows a t-distribution with $n_{1}+n_{2}-2$ degrees of freedom.

In case (ii), under H_{0}, there is only the approximate distribution,

$$
T=\frac{\bar{X}-\bar{Y}-\Delta_{0}}{\sqrt{\frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}}} \quad \sim^{\text {approx }} \quad t(v)
$$

where the degrees of freedom are

$$
v=\frac{\left(\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}\right)^{2}}{\frac{\left(s_{1}^{2} / n_{1}\right)^{2}}{n_{1}-1}+\frac{\left(s_{s}^{2} / n_{s}\right)^{2}}{n_{s}-1}} .
$$

If v is not an integer, may round down to the nearest integer (for using a table).

Case (i): two sample T-Tests with equal variance

Case (ii): two sample T-Tests with unequal variance

Model:	$X_{i} \stackrel{\text { i.i.d. }}{\sim} N\left(\mu_{1}, \sigma_{1}^{2}\right)$,	$Y_{i} \stackrel{i . i . d .}{\sim} N\left(\mu_{2}, \sigma_{2}^{2}\right)$.		
Null hypothesis:	$H_{0}: \mu_{1}-\mu_{2}=\Delta_{0}$.			
Test statistic:	$t=\frac{\bar{x}-\bar{y}-\Delta_{0}}{\sqrt{\frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}}},$	$T=\frac{\bar{X}-\bar{Y}-\Delta_{0}}{\sqrt{\frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}}} .$		
Alternative Hypotheses	P-value		Rejection Criterion for Fixed-Level Tests	
$H_{1}: \mu_{1}-\mu_{2} \neq \Delta_{0}$	$P=2\left[1-F_{V}(\|t\|)\right]$		$\begin{aligned} & t>t_{1-\alpha / 2, v} \\ & t_{\alpha / 2, v} \end{aligned}$	$t<$
$H_{1}: \mu_{1}-\mu_{2}>\Delta_{0}$	$P=1-F_{v}(t)$		$t>t_{1-\alpha, v}$	
$H_{1}: \mu_{1}-\mu_{2}<\Delta_{0}$	$P=F_{v}(t)$		$t<t_{\alpha, v}$	

$1-\alpha$ Confidence Intervals

Case (i) (Equal variances):

$$
\bar{x}-\bar{y}-t_{1-\alpha / 2, n_{1}+n_{2}-2} s_{\rho} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}} \leq \mu_{1}-\mu_{2} \leq \bar{x}-\bar{y}+t_{1-\alpha / 2, n_{1}+n_{2}-2} s_{\rho} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}
$$

Case (ii) (Unequal variances):

$$
\bar{x}-\bar{y}-t_{1-\alpha / 2, v} \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}} \leq \mu_{1}-\mu_{2} \leq \bar{x}-\bar{y}+t_{1-\alpha / 2, v} \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}
$$

Unit 9 - Linear Regression

The collection of statistical tools that are used to model and explore relationships between variables that are related in a nondeterministic manner is called regression analysis.

Of key importance is the conditional expectation,

$$
E(Y \mid x)=\mu_{Y \mid x}=\beta_{0}+\beta_{1} x \quad \text { with } \quad Y=\beta_{0}+\beta_{1} x+\epsilon
$$

where x is not random and ϵ is a Normal random variable with $E(\epsilon)=0$ and $V(\epsilon)=\sigma^{2}$.

Simple Linear Regression is the case where both x and y are scalars, in which case the data is,

$$
\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)
$$

Then given estimates of β_{0} and β_{1} denoted by $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ we have

$$
y_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}+e_{i} \quad i=1,2, \ldots, n
$$

where e_{i}, are the residuals and we can also define the predicted observation,

$$
\hat{y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{i} .
$$

Ideally it would hold that $y_{i}=\hat{y}_{i}\left(e_{i}=0\right)$ and thus total mean squared error

$$
L:=S S_{E}=\sum_{i=1}^{n} e_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}=\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}
$$

would be zero.

But in practice, unless $\sigma^{2}=0$ (and all points lie on the same line), we have that $L>0$.

The standard (classic) way of determining the statistics $\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)$ is by minimisation of L.

The solution, called the least squares estimators must satisfy

$$
\begin{aligned}
& \left.\frac{\partial L}{\partial \beta_{0}}\right|_{\hat{\beta}_{0} \hat{\beta}_{1}}=-2 \sum_{i=1}^{n}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}\right)=0 \\
& \left.\frac{\partial L}{\partial \beta_{1}}\right|_{\hat{\beta}_{0} \hat{\beta}_{1}}=-2 \sum_{i=1}^{n}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}\right) x_{i}=0
\end{aligned}
$$

Simplifying these two equations yields

$$
\begin{aligned}
& n \hat{\beta}_{0}+\hat{\beta}_{1} \sum_{i=1}^{n} x_{i}=\sum_{i=1}^{n} y_{i} \\
& \hat{\beta}_{0} \sum_{i=1}^{n} x_{i}+\hat{\beta}_{1} \sum_{i=1}^{n} x_{i}^{2}=\sum_{i=1}^{n} y_{i} x_{i}
\end{aligned}
$$

These are called the least squares normal equations. The solution to the normal equations results in the least squares estimators $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$. Using the sample means, \bar{x} and \bar{y} the estimators are,

$$
\hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}, \quad \hat{\beta}_{1}=\frac{\sum_{i=1}^{n} y_{i} x_{i}-\frac{\left(\sum_{i=1}^{n} y_{i}\right)\left(\sum_{i=1}^{n} x_{i}\right)}{n}}{\sum_{i=1}^{n} x_{i}^{2}-\frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n}}
$$

The following quantities are also of common use:

$$
\begin{gathered}
S_{x x}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\sum_{i=1}^{n} x_{i}^{2}-\frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n} \\
S_{x y}=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)\left(x_{i}-\bar{x}\right)=\sum_{i=1}^{n} x_{i} y_{i}-\frac{\left(\sum_{i=1}^{n} x^{i}\right)\left(\sum_{i=1}^{n} y^{i}\right)}{n}
\end{gathered}
$$

Hence,

$$
\hat{\beta}_{1}=\frac{S_{x y}}{S_{x x}} .
$$

Further,
$S S_{T}=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}, \quad S S_{R}=\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}, \quad S S_{E}=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}$.

The Analysis of Variance Identity is

$$
\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}=\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}+\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}
$$

or,

$$
S S_{T}=S S_{R}+S S_{E}
$$

Also, $S S_{R}=\hat{\beta}_{1} S_{x y}$.
An Estimator of the Variance, σ^{2} is

$$
\hat{\sigma}^{2}:=M S_{E}=\frac{S S_{E}}{n-2}
$$

A widely used measure for a regression model is the following ratio of sum of squares, which is often used to judge the adequacy of a regression model:

$$
R^{2}=\frac{S S_{R}}{S S_{T}}=1-\frac{S S_{E}}{S S_{T}}
$$

$$
\begin{gathered}
E\left(\hat{\beta}_{0}\right)=\beta_{0}, \quad V\left(\hat{\beta}_{0}\right)=\sigma^{2}\left[\frac{1}{n}+\frac{\bar{x}^{2}}{S_{X X}}\right] \\
E\left(\hat{\beta}_{1}\right)=\beta_{1}, \quad V\left(\hat{\beta}_{1}\right)=\frac{\sigma^{2}}{S_{X X}} . \\
\operatorname{se}\left(\hat{\beta}_{1}\right)=\sqrt{\frac{\hat{\sigma}^{2}}{S_{X X}}} \quad \text { and } \quad \operatorname{se}\left(\hat{\beta}_{0}\right)=\sqrt{\hat{\sigma}^{2}\left[\frac{1}{n}+\frac{\bar{x}^{2}}{S_{X X}}\right]}
\end{gathered}
$$

The Test Statistic for the Slope is

$$
T=\frac{\hat{\beta}_{1}-\beta_{1,0}}{\sqrt{\hat{\sigma}^{2} / S_{X X}}}
$$

$$
H_{0}: \beta_{1}=\beta_{1,0} \quad H_{1}: \beta_{1} \neq \beta_{1,0}
$$

Under H_{0} the test statistic T follows a \mathbf{t} - distribution with " $n-2$ degree of freedom".

An alternative is to use the F statistic as is common in ANOVA (Analysis of Variance) - not covered fully in the course.

$$
F=\frac{S S_{R} / 1}{S S_{E} /(n-2)}=\frac{M S_{R}}{M S_{E}}
$$

Under H_{0} the test statistic F follows an \mathbf{F} - distribution with " 1 degree of freedom in the numerator and $n-2$ degrees of freedom in the denominator".

Analysis of Variance Table for Testing Significance of Regression

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	$\boldsymbol{F}_{\mathbf{0}}$
Regression	$S S_{R}=\hat{\beta}_{1} S_{x y}$	1	$M S_{R}$	$M S_{R} / M S_{E}$
Error	$S S_{E}=S S_{T}-\hat{\beta}_{1} S_{x y}$	$n-2$	$M S_{E}$	
Total	$S S_{T}$	$n-1$		

There are also confidence intervals for β_{0} and β_{1} as well as prediction intervals for observations. We don't cover these formulas.

To check the regression model assumptions we plot the residuals e_{i} and check for (i) Normality. (ii) Constant variance. (iii) Independence.

Logistic Regression

Take the response variable, Y_{i} as a Bernoulli random variable. In this case notice that $E(Y)=P(Y=1)$.

The logit response function has the form

$$
E(Y)=\frac{\exp \left(\beta_{0}+\beta_{1} x\right)}{1+\exp \left(\beta_{0}+\beta_{1} x\right)}
$$

Fitting a logistic regression model to data yields estimates of β_{0} and β_{1}. The following formula is called the odds

$$
\frac{E(Y)}{1-E(Y)}=\exp \left(\beta_{0}+\beta_{1} x\right)
$$

