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Unit 8 – Two Sample Inference
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Sample x1, . . . , xn1 modelled as an i.i.d. sequence of random
variables, X1, . . . ,Xn1 and another sample y1, . . . , yn2 modelled by
an i.i.d. sequence of random variables, Y1, . . . ,Yn1 .

Observations, xi and yi (for same i) are not paired. Possible that
n1 6= n2 (unequal sample sizes).

Model: Xi
i .i .d .∼ N(µ1, σ

2
1), Yi

i .i .d .∼ N(µ2, σ
2
2).

Two Variations:

(i) equal variances: σ2
1 = σ2

2 := σ2.

(ii) unequal variances: σ2
2 6= σ2

2.
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Focus on difference in means,

∆µ := µ1 − µ2 = E [Xi ]− E [Yi ].

Ask if
∆µ (=, <,>) 0

i.e. if µ1 (=, <,>) µ2.

But we can also replace the “0” with other values, e.g.
µ1 − µ2 = ∆0 for some ∆0.

4



A point estimator for ∆µ is X − Y (difference in sample means).

The estimate from the data is denoted by x − y (the difference in
the individual sample means), with,

x =
1

n1

n1∑
i=1

xi , y =
1

n2

n2∑
i=1

yi .
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In the case (ii) of unequal variances: Point estimates for σ2
1 and

σ2
2 are the individual sample variances,

s2
1 =

1

n1 − 1

n1∑
i=1

(xi − x)2, s2
2 =

1

n2 − 2

n2∑
i=1

(yi − y)2.
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In case (i) of equal variances, both S2
1 and S2

2 estimate σ2. In
this case, a more reliable estimate can be obtained via the pooled
variance estimator

S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2
.
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In case (i), under H0:

T =
X − Y −∆0

Sp

√
1

n1
+

1

n2

∼ t
(
n1 + n2 − 2

)
.

The T test statistic follows a t-distribution with n1 + n2 − 2
degrees of freedom.
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In case (ii), under H0, there is only the approximate distribution,

T =
X − Y −∆0√

S2
1

n1
+

S2
2

n2

∼approx t
(
v
)
.

where the degrees of freedom are

v =

(
s2

1

n1
+

s2
2

n2

)2

(
s2

1/n1

)2

n1 − 1
+

(
s2
s /ns

)2

ns − 1

.

If v is not an integer, may round down to the nearest integer (for
using a table).
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Case (i): two sample T-Tests with equal variance

Model: Xi
i.i.d.∼ N(µ1, σ

2), Yi
i.i.d.∼ N(µ2, σ

2).

Null hypothesis: H0 : µ1 − µ2 = ∆0.

Test statistic: t =
x − y − ∆0

sp

√
1

n1

+
1

n2

, T =
X − Y − ∆0

Sp

√
1

n1

+
1

n2

.

Alternative P-value Rejection Criterion

Hypotheses for Fixed-Level Tests

H1 : µ1 − µ2 6= ∆0 P = 2
[
1− Fn1+n2−2

(
|t|
)]

t > t1−α/2,n1+n2−2 or
t < tα/2,n1+n2−2

H1 : µ1 − µ2 > ∆0 P = 1− Fn1+n2−2
(
t
)

t > t1−α,n1+n2−2

H1 : µ1 − µ2 < ∆0 P = Fn1+n2−2
(
t
)

t < tα,n1+n2−2

10



Case (ii): two sample T-Tests with unequal variance

Model: Xi
i.i.d.∼ N(µ1, σ

2
1 ), Yi

i.i.d.∼ N(µ2, σ
2
2 ).

Null hypothesis: H0 : µ1 − µ2 = ∆0.

Test statistic: t =
x − y − ∆0√

S2
1

n1

+
S2

2

n2

, T =
X − Y − ∆0√

S2
1

n1

+
S2

2

n2

.

Alternative P-value Rejection Criterion

Hypotheses for Fixed-Level Tests

H1 : µ1 − µ2 6= ∆0 P = 2
[
1− Fv

(
|t|
)]

t > t1−α/2,v or t <
tα/2,v

H1 : µ1 − µ2 > ∆0 P = 1− Fv
(
t
)

t > t1−α,v

H1 : µ1 − µ2 < ∆0 P = Fv
(
t
)

t < tα,v
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1− α Confidence Intervals

Case (i) (Equal variances):

x − y − t1−α/2,n1+n2−2 sp

√
1

n1

+
1

n2

≤ µ1 − µ2 ≤ x − y + t1−α/2,n1+n2−2 sp

√
1

n1

+
1

n2

Case (ii) (Unequal variances):

x − y − t1−α/2,v

√√√√ s2
1

n1

+
s2
2

n2

≤ µ1 − µ2 ≤ x − y + t1−α/2,v

√√√√ s2
1

n1

+
s2
2

n2
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Unit 9 – Linear Regression
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The collection of statistical tools that are used to model and
explore relationships between variables that are related in a
nondeterministic manner is called regression analysis.

Of key importance is the conditional expectation,

E (Y | x) = µY | x = β0 + β1x with Y = β0 + β1x + ε,

where x is not random and ε is a Normal random variable with
E (ε) = 0 and V (ε) = σ2.
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Simple Linear Regression is the case where both x and y are
scalars, in which case the data is,

(x1, y1), . . . , (xn, yn).

Then given estimates of β0 and β1 denoted by β̂0 and β̂1 we have

yi = β̂0 + β̂1xi + ei i = 1, 2, . . . , n,

where ei , are the residuals and we can also define the predicted
observation,

ŷi = β̂0 + β̂1xi .
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Ideally it would hold that yi = ŷi (ei = 0) and thus total mean
squared error

L := SSE =
n∑

i=1

e2
i =

n∑
i=1

(yi − ŷi )
2 =

n∑
i=1

(yi − β0 − β1xi )
2,

would be zero.

But in practice, unless σ2 = 0 (and all points lie on the same line),
we have that L > 0.
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The standard (classic) way of determining the statistics (β̂0, β̂1) is
by minimisation of L.

The solution, called the least squares estimators must satisfy

∂L

∂β0

∣∣∣
β̂0β̂1

= −2
n∑

i=1

(yi − β̂0 − β̂1xi ) = 0

∂L

∂β1

∣∣∣
β̂0β̂1

= −2
n∑

i=1

(yi − β̂0 − β̂1xi )xi = 0
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Simplifying these two equations yields

nβ̂0 + β̂1

n∑
i=1

xi =
n∑

i=1

yi

β̂0

n∑
i=1

xi + β̂1

n∑
i=1

x2
i =

n∑
i=1

yixi

These are called the least squares normal equations. The
solution to the normal equations results in the least squares
estimators β̂0 and β̂1. Using the sample means, x and y the
estimators are,

β̂0 = y − β̂1x , β̂1 =

n∑
i=1

yixi −

(
n∑

i=1
yi

)(
n∑

i=1
xi

)
n

n∑
i=1

x2
i −

(
n∑

i=1
xi

)2

n

.
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The following quantities are also of common use:

Sxx =
n∑

i=1

(xi − x)2 =
n∑

i=1

x2
i −

(
n∑

i=1
xi

)2

n

Sxy =
n∑

i=1

(yi − y)(xi − x) =
n∑

i=1

xiyi −

(
n∑

i=1
x i
)(

n∑
i=1

y i
)

n

Hence,

β̂1 =
Sxy
Sxx

.

Further,

SST =
n∑

i=1

(yi−y)2, SSR =
n∑

i=1

(ŷi−y)2, SSE =
n∑

i=1

(yi−ŷi )2.
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The Analysis of Variance Identity is

n∑
i=1

(
yi − y

)2
=

n∑
i=1

(
ŷi − y

)2
+

n∑
i=1

(
yi − ŷi

)2

or,
SST = SSR + SSE .

Also, SSR = β̂1Sxy .

An Estimator of the Variance, σ2 is

σ̂2 := MSE =
SSE
n − 2
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A widely used measure for a regression model is the following ratio
of sum of squares, which is often used to judge the adequacy of a
regression model:

R2 =
SSR
SST

= 1− SSE
SST

.
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E
(
β̂0

)
= β0, V

(
β̂0

)
= σ2

[
1

n
+

x2

SXX

]

E
(
β̂1

)
= β1, V

(
β̂1

)
=

σ2

SXX
.

se
(
β̂1

)
=

√
σ̂2

SXX
and se

(
β̂0

)
=

√√√√σ̂2

[
1

n
+

x2

SXX

]
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The Test Statistic for the Slope is

T =
β̂1 − β1,0√
σ̂2/SXX

H0 : β1 = β1,0 H1 : β1 6= β1,0

Under H0 the test statistic T follows a t - distribution with
“n − 2 degree of freedom”.
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An alternative is to use the F statistic as is common in ANOVA
(Analysis of Variance) – not covered fully in the course.

F =
SSR/1

SSE/(n − 2)
=

MSR
MSE

.

Under H0 the test statistic F follows an F - distribution with “1
degree of freedom in the numerator and n − 2 degrees of freedom
in the denominator”.
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Analysis of Variance Table for Testing Significance of
Regression

Source of Sum of Degrees of Mean F 0

Variation Squares Freedom Square

Regression SSR = β̂1Sxy 1 MSR MSR/MSE

Error SSE = SST − β̂1Sxy n − 2 MSE

Total SST n − 1
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There are also confidence intervals for β0 and β1 as well as
prediction intervals for observations. We don’t cover these
formulas.
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To check the regression model assumptions we plot the residuals ei
and check for (i) Normality. (ii) Constant variance. (iii)
Independence.
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Logistic Regression
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Take the response variable, Yi as a Bernoulli random variable. In
this case notice that E (Y ) = P(Y = 1).

The logit response function has the form

E
(
Y
)

=
exp(β0 + β1x)

1 + exp
(
β0 + β1x

) .
Fitting a logistic regression model to data yields estimates of β0

and β1. The following formula is called the odds

E
(
Y
)

1− E
(
Y
) = exp

(
β0 + β1x

)
.
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