
Question 1. Seeing the CLT with simulation

Consider the following random variables

(a) What is the mean and variance of each?

Uniform

The mean of an Uniform distributed variable is given by

The variance is given by

Exponential

The mean of an Exponentially distributed variable is given by

The variance is given by

Binomial

The mean of a Binomial distributed variable is given by

The variance is given by

U ∼ Uniform(5, 15)
V ∼ Exponential(10)

W ∼ Binomial(10, 0.4)

= E(U) = = = 10μU

a + b

2
5 + 15

2

= V ar(U) = = = 8σ2
U

(b − a)2

12
(15 − 5)2

12
1
3

= E(V ) = = = 0.1μV

1
λ

1
10

= V ar(V ) = = = 0.01σ2
V

1
λ2

1

102

= E(W) = np = 10 × 0.4 = 4μW

= np(1 − p) = 10 × 0.4 × (1 − 0.4) = 2.4σ2
W
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(b) Consider now,

where  is either  or  (distributed as  or ) and different  are assumed independent. What is the

mean and variance of this random sum,  (a function of )? Answer this separately for  and 

In all cases this is a sum of random variables and so

As the variables will be independent identically distributed (i.i.d.) this leads to

Uniform

Using the above working this means if  is made of Uniform random variables  then

Exponential

Using the above working this means if  is made of Exponential random variables  then

Binomial

Using the above working this means if  is made of Binomial random variables  then

= ,Sn ∑
i=1

n

Xi

Xi ,Ui Vi Wi U , V W Xi

,Si n U , V W .

= E( )μSi
Si

= V ar( )σ2
Si

Si

= E( )∑
i=1

n

Xi

= E( )∑
i=1

n

Xi

= V ar( )∑
i=1

n

Xi

= V ar( )∑
i=1

n

Xi

= E( )μSi
Si

= V ar( )σ2
Si

Si

= nE(X)
= nV ar(X)

Si U
= E( )μSi

Si

= V ar( )σ2
Si

Si

= nE(U) = 10n

= nV ar(U) = 8 n1
3

Si V
= E( )μSi

Si

= V ar( )σ2
Si

Si

= nE(V ) = 0.1n

= nV ar(V ) = 0.01n

Si W
= E( )μSi

Si

= V ar( )σ2
Si

Si

= nE(W) = 4n

= nV ar(W) = 2.4n
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(c) For  either  or  define

Use the CLT to postulate the distribution of  for non-small 

Calculating the expected value for  we get

as  and  would be constants for this random variable. Similarly calculating the variance we get

So all of the variables  and  have mean zero and variance 1. This holds for all  As  increases the CLT

states that this random variable gets closer to the standard Normal distribution.

(d) Generate Monte Carlo estimates of  using no less than  generations of  for every 

(separately for each  or ). Compare your results to  taken from a normal distribution table, where

 is a standard normal variable. Do this for  Tabulate your results neatly and explain your results.

The following Julia code will produce the required Monte Carlo simulations with the distributions being in rows and the

number of points increasing left to right.

In [1]: using Distributions

@everywhere uniDist = Uniform(5,15)
@everywhere expDist = Exponential(1/10)
@everywhere binDist = Binomial(10,0.4)

output=pmap(d->map(n->sum(abs.((sum(rand(d,n,10^7),1).-n*mean(d))./sqrt(
n*var(d))) .> 2.0)/10^7,[2,5,10,15,20]),

[uniDist,expDist,binDist])

Now calculate the probability of  from a standard normal distribution

In [2]: 2*ccdf(Normal(),2)

Comparing this value to the table above, it can be seen that as the number of items in the sample increases the closer the

probability calculated is to the Normal distribution. The only potential exception to this is the Binomial distribution which is

close to the value but oscillates around it.

Xi ,Ui Vi ,Wi

= .Z
~

n

− E( )Sn Sn

var( )Sn
− −−−−−√

Z
~

n.

Z
~

E( )Z
~

= E ( )− E( )Sn Sn

var( )Sn
− −−−−−√

=
E( ) − E( )Sn Sn

var( )Sn
− −−−−−√

= 0
E( )Sn var( )Sn

var( )Z
~

= var ( )− E( )Sn Sn

var( )Sn
− −−−−−√

=
var( )Sn

( )var( )Sn
− −−−−−√ 2

= 1
,U

~
n V

~
n W

~
n n. n

P ( > 2.0)∣∣Z
~

n∣∣ 106 Z
~

n n,
U , V W P (|Z| > 2.0)

Z n = 2, 5, 10, 15, 20.

P(|Z| > 2)

Out[1]: 3-element Array{Array{Float64,1},1}:
 [0.0337003, 0.042986, 0.0442306, 0.0446393, 0.0448919] 
 [0.0465868, 0.0412807, 0.0414771, 0.0424985, 0.0432004]
 [0.0370493, 0.0594968, 0.0517734, 0.0368522, 0.051071] 

Out[2]: 0.04550026389635841
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Question 2. Sample Mean and Sample Variance

Suppose that a sample of size  is selected at random from a normal population with mean 100 and standard

deviation 8. Let  be the sample mean and  being the sample variance.

(a) Calculate 

To calculate this probability we need to find the difference of the cdf between the upper and lower bounds. To do this we

need to standardise to the standard normal distribution and then look up the values in a table.

(b) Find  such that 

Here again we need to standardise the distribution to the standard normal distribution and then look up this value in the

tables, remembering that as we are looking for a two-sided probability that we need to multiply the value in the table by

two.

(c) Use Monte-Carlo simulation with  samples to verify that  Then estimate: (i) 

(ii) 

First we need to generate  random samples from the distribution and than take the variance of each sample. From

there we can calculate the mean and other probabilities.

In [3]: using Distributions
samplesq2= rand(Normal(100,8),10^5,20);
varsampq2= var(samplesq2,2) #,2 calculates by row.
mean(varsampq2)

In [4]: #P(|S^2-64|>2)
mean(abs.(varsampq2.-64).>2)

n = 20
X̄ S2

P(98 ≤ ≤ 102).X̄

P(98 ≤ ≤ 102)X̄ = P( ≤ 102) − P( ≤ 98)X̄ X̄

= P ≤ − P ≤
⎛
⎝

− 100X̄
8
20√

102 − 100
8
20√

⎞
⎠

⎛
⎝

− 100X̄
8
20√

98 − 100
8
20√

⎞
⎠

= P(Z ≤ 1.118034) − P(Z ≤ −1.118034)
= 0.8682 − 0.1318
= 0.7364

x P ( − 100 > x) = 0.01∣∣X̄ ∣∣

P ( − 100 > x)∣∣X̄ ∣∣

P >
⎛
⎝

− 100 − 0∣∣X̄ ∣∣
8
20√

x − 0
8
20√

⎞
⎠

x
8
20√

x

x

= 0.01

= P(|Z| > 2.5758)

= 2.5758

= × 2.5758
8

20−−√
= 4.6077

105 E[ ] = 64.S2 P ( − 64 > 2)∣∣S2 ∣∣
var( ).S2

105

Out[3]: 64.08247747939495

Out[4]: 0.92324
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In [5]: #var(S^2)
var(varsampq2)

From these calculations it can be seen that the variance of a random variable is a random variable itself.

Question 3. Choice of Sample Size

A normal population has a mean 30 and standard deviation 5. How large must the random sample be if you want the

standard error of the sample average to be less than 0.5? Verify your result using Monte-Carlo simulation.

To verify this using Monte-Carlo simulation we need to create a function that creates random samples from the

distribution, increasing in sample size at each step until the standard error is the value we are looking for. The code for

this is below:

In [6]: using Distributions

function testDistribution(meanPop, stdPop, targetStdErr)
dist = Normal(meanPop, stdPop);
n = 1;
stdErr = 10^6;
while stdErr > targetStdErr && n<10^6

n += 1;
distSamp = rand(dist,n);
stdSamp = std(distSamp,mean=meanPop);
stdErr = abs(stdSamp)/sqrt(n);

end
return n;

end

mean([testDistribution(30,5,0.5) for _ in 1:10^6])

This value is slightly lower than expected due to sampling variability in the random samples which would be expected.

s. e. ( )x̄

0.5

0.25

n

=
s

n−−√

=
5
n−−√

=
25
n

=
25
0.25

= 100

Out[5]: 431.45111273153066

Out[6]: 78.245309
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Question 4. Polymer Elasticity

The elasticity of a polymer is affected by the concentration of a reactant. When low concentration is used, the true mean

elasticity is 65, and when high concentration is used, the mean elasticity is 75. The standard deviation of elasticity is 6

regardless of concentration. If two random samples of size 25 are taken, find the probability that 

Although it is not explicitly stated, as the question refers to true means, assume the variables have normal distribution.

Thus

Combining these in the linear combination stated in the question we get

This can be done as the samples are assumed to be independent of each other so no covariance term is required when

adding the variances. We can now calculate the probability of the event required.

Question 5. Building up Confidence

For a normal population with known variance  answer the following questions:

(a) What is the confidence level for the interval 

To work out the confidence level here, first note that the interval is of the form . This means we only

need to look up the  value in the tables and then calculate . So the probability 

which is 0.9643

(b) What is the confidence level for the interval 

Here the probability  is 0.9832.

(c) What is the confidence level for the interval 

Here the probability  is 0.9357.

(d) What is the confidence level for the interval 

Here the probability  is 0.95.

We can check these results using the following Julia code (although it is advisable to look them up in a table)

− > 2.X
¯ ¯¯̄

high X
¯ ¯¯̄

low

X
¯ ¯¯̄

high

X
¯ ¯¯̄

low

∼ N (75, ) = N (75, )( )6

25−−√

2

1.22

∼ N (65, ) = N (65, )( )6

25−−√

2

1.22

Δ = − ∼ N(75 − 65, 2 × ) = N(10, 2 × )X
¯ ¯¯̄

high X
¯ ¯¯̄

low 1.22 1.22

P(Δ > 2) = P ( > )Δ− 10

2 × 1.22
− −−−−−−√

2 − 10

2 × 1.22
− −−−−−−√

= P(Z > −4.71)
= 0.9999

,σ2

− 2.1σ/ ≤ μ ≤ + 2.1σ/ ?x̄ n−−√ x̄ n−−√

± σ/x̄ z∗
1−α

2

n−−√

z∗
1− α

2
P (|Z| > )z∗

1−α

2

P(|Z| > 2.1)

− 2.39σ/ ≤ μ ≤ + 2.39σ/ ?x̄ n−−√ x̄ n−−√

P(|Z| > 2.39)

− 1.85σ/ ≤ μ ≤ + 1.85σ/ ?x̄ n−−√ x̄ n−−√

P(|Z| > 1.85)

− 1.96σ/ ≤ μ ≤ + 1.96σ/ ?x̄ n−−√ x̄ n−−√

P(|Z| > 1.96)
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In [7]: for z = [2.1,2.39,1.85,1.96]
println("The confidence level of z*=",z," is ", 1-2*ccdf(Normal(0,1)

,z));
end

Question 6. Beverage Machine

A postmix beverage machine is adjusted to release a certain amount of syrup into a chamber where it is mixed with

carbonated water. A random sample of 20 beverages was found to have a mean syrup content of x = 0.9 fluid ounce and

a standard deviation of s = 0.011 fluid ounce. Find a 99% CI on the mean volume of syrup dispensed. State any

assumptions that are made.

First we assume that the amount of syrup dispensed has an underlying Normal distribution and that all observations are

independent meaning we can use a -Distribution. Using a -Distribution with  degrees of freedom we can

look up the t-value related to  which is 2.861. Now we can construct the

confidence interval as follows

So the beverage machine dispenses between 0.892863 and 0.907037 on average with 99% confidence.

T T 20 − 1 = 19
P(T > t) = = = 0.0051−α

2
1−0.99

2

− σ/x̄ t∗1−α

2

n−−√

0.9 − 2.861 × 0.011/ 20−−√
0.892963

≤ μ ≤ + σ/x̄ t∗1−α

2

n−−√

≤ μ ≤ 0.9 + 2.861 × 0.011/ 20−−√
≤ μ ≤ 0.907037

The confidence level of z*=2.1 is 0.9642711588743669
The confidence level of z*=2.39 is 0.9831516272013087
The confidence level of z*=1.85 is 0.9356864504087726
The confidence level of z*=1.96 is 0.9500042097035591
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Question 7. P-Value

For the hypothesis test  against  and variance known, calculate the P-value for each of the

following test statistics:

(a) z = 2.05

Similar to Question 5 we just need to look up the probability  from the tables. Doing this we get that the

-value is 

(b) z = -1.84

The -value in this case is 

(c) z = 0.4

The -value in this case is 

(d) z = 0

The -value in this case is 

(e) z = -2.05

The -value in this case is 

(f) z = 3

The -value in this case is 

Now repeat (a)-(f) when the alternative hypothesis is 

Now we have to calculate  as the test is now two sided.

(a) z = 2.05

Doing this we get that the -value is 

(b) z = -1.84

The -value in this case is 

(c) z = 0.4

The -value in this case is 

(d) z = 0

The -value in this case is 

(e) z = -2.05

The -value in this case is 

(f) z = 3

The -value in this case is 

This can be checked with the following Julia code

: μ = 10H0 : μ > 10H1

P(Z > z)
P P(Z > 2.05) = 0.0202

P P(Z > −1.84) = 0.9671.

P P(Z > 0.4) = 0.3446.

P P(Z > 0) = 0.5000.

P P(Z > −2.05) = 0.9798.

P P(Z > 3) = 0.0013.

:≠ μ = 10.H1

P(Z ≠ z) = 2 ×min(P(Z < z),P(Z > z))

P P(|Z| > |2.05|) = 0.0404

P P(|Z| > | − 1.84|) = 0.0658.

P P(|Z| > |0.4|) = 0.6892.

P P(Z > 0) = 1.0000.

P P(Z > −2.05) = 0.0404.

P P(Z > 3) = 0.0026.
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In [8]: for z=[2.05,-1.84,0.4,0,-2.05,3]
println("P(Z>",z,")=",round(ccdf(Normal(0,1),z),4),", P(Z!=",z,")=",

round(2*ccdf(Normal(0,1),z),4))
end

Question 8. Sodium Content in Organic Cornflakes

The sodium content of twenty 300-gram boxes of organic cornflakes was determined. The data (in milligrams) is contained

in (9-65.csv).

(a) Can you support a claim that mean sodium content of this brand of cornflakes differs from 120 milligrams? use

 state your hypothesis clearly, and the P-value and make a conclusion.

First so that we can calculate this hypothesis test we need to calculate the mean and variation for the data set.

In [9]: using DataFrames
cornflake = readtable("9-65.csv",header=false)
cornflake = cornflake[1] #To save dealing with indexes.

meancorn = mean(cornflake)
varcorn = var(cornflake)
lencorn = length(cornflake)

println("The mean of the cornflakes is ",meancorn)
println("The variance of the cornflakes is ",varcorn)
println("There are ", lencorn, " data points.")

Now, we state the hypotheses

 The mean sodium content of this brand of cornflakes is equal to 120 milligrams.

 The mean sodium content of this brand of cornflakes is not equal to 120 milligrams

We now calculate the test statistic from a T-distribution with 19 (20-1) degrees of freedom. This assumes that the data has

an underlying normal distribution and that the observations are independent. The test statistics is calculate as

This is a very large t-value, so looking up the probability in the tables with 19 degrees of freedom give that

 If we want an exact value we need to use software and we get,

In [10]: using Distributions
2*ccdf(TDist(19),(mean(cornflake)-120)/sqrt(var(cornflake)/20))

α = 0.05,

:H0
:H1

t19 =
− μx̄
s

n√

=
129.747 − 120

0.768…
20

− −−−−√
= 49.735…

P(|T | > t) < 0.0002.

P(Z>2.05)=0.0202, P(Z!=2.05)=0.0404
P(Z>-1.84)=0.9671, P(Z!=-1.84)=1.9342
P(Z>0.4)=0.3446, P(Z!=0.4)=0.6892
P(Z>0.0)=0.5, P(Z!=0.0)=1.0
P(Z>-2.05)=0.9798, P(Z!=-2.05)=1.9596
P(Z>3.0)=0.0013, P(Z!=3.0)=0.0027

The mean of the cornflakes is 129.747
The variance of the cornflakes is 0.7681273684210458
There are 20 data points.

Out[10]: 1.3747603780291543e-21
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From this p-value we conclude that there is extremely strong evidence to support the alternative hypothesis, therefore we

conclude that the mean sodium level of this brand of cornflakes is significantly different from 120 milligrams.

To use Julia to compute this hypothesis test we would run the following commands.

In [11]: using HypothesisTests

OneSampleTTest(cornflake,120)

(b) Check that sodium content is normally distributed (e.g. using the code for Normal probability plots from Assignment 3).

Using the code from Assignment 3 we get the following plot

Out[11]: One sample t-test
-----------------
Population details:
    parameter of interest:   Mean
    value under h_0:         120
    point estimate:          129.747
    95% confidence interval: (129.33681871490268, 130.15718128509735)

Test summary:
    outcome with 95% confidence: reject h_0
    two-sided p-value:           1.3747603780291443e-21

Details:
    number of observations:   20
    t-statistic:              49.73582705870276
    degrees of freedom:       19
    empirical standard error: 0.1959754281052915

STAT2201-Assignment_4-2018 http://localhost:8888/nbconvert/html/STAT2201...

10 of 12 31/05/2018, 18:39



In [12]: using PyPlot, Distributions, StatsBase

function NormalProbabilityPlot(data)
mu = mean(data)
sig = std(data)
n = length(data)
p = [(i-0.5)/n for i in 1:n]
x = quantile.(Normal(),p)
y = sort([(i-mu)/sig for i in data])
PyPlot.scatter(x,y)
xRange = maximum(x) - minimum(x)
PyPlot.plot([minimum(x) - xRange/8,maximum(x) + xRange/8],[minimum(x

) - xRange/8,maximum(x) + xRange/8],
color="red",linewidth=0.5)

xlabel("Theorectical quantiles")
ylabel("Quantiles of data")
return

end

NormalProbabilityPlot(cornflake)

Looking at this plot, there are no strong deviations from the line and thus normality. With a small sample such as this this

looks reasonable to assume that the assumption of the Normal Distribution is satisfied.

(c) Compute the power of the test if the true mean sodium content is 130.5 milligrams.

Given that we assume that the true mean is 120 milligrams it is highly likely that a mean that is 10.5 milligrams away will

be detected as the variance is less than 1. This is a badly designed question and apologies are made for this. There are

many ways to compute the power of this test, however using Monte-Carlo methods we can use the following code:
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In [13]: using Distributions

function tStatisticUnderH1(testMean,n)
data= rand(Normal(testMean,std(cornflake)),n);
xBar= mean(data);
s= std(data);
tStatistic = (xBar - 120)/(s/sqrt(length(data)));
return tStatistic

end

mean([abs(tStatisticUnderH1(130.5,20)) > 2.093 for _ in 1:10^6])

As can be seen this gives a power of near 1 meaning the test will be able to detect this difference with high probability.

(d) What sample size would be required to detect a true mean sodium content of 130.1 milligrams if you wanted the power

of the test to be at least 0.75? Explain your answer.

Given that the test value is still a large distance from the true mean of 120 milligrams the sample size will be quite small.

Again if we run the function above by this time iterate through different samples sizes we can find the correct sample size.

In [14]: [(n,mean([abs(tStatisticUnderH1(130.1,n)) > quantile(TDist(n-1),0.975) f
or _ in 1:10^6])) for n in 2:3]

So at least 2 samples would be required to detect a true mean content of 130.1 milligrams at a power of at least 0.75.

(e) Explain how the question in part (a) could be answered by constructing a two-sided confidence interval on the mean

sodium content.

If we construct a two sided confidence interval we can see if the true mean lies within its bounds to determine if it is a

plausible value. If it does not the mean of the sample is significantly different to that of the true mean. Here the confidence

interval would be

In [15]: confint(OneSampleTTest(cornflake,120))

As 120 milligrams is not within the confidence interval we can say that the sample is significantly different.

Out[13]:
1.0

Out[14]: 2-element Array{Tuple{Int64,Float64},1}:
 (2, 0.799633)
 (3, 1.0)     

Out[15]: (129.33681871490268, 130.15718128509735)
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