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Probability and Monte Carlo

ã An experiment that can result in different outcomes, even though it is repeated in the same
manner every time, is called a random experiment.

ã The set of all possible outcomes of a random experiment is called the sample space of the
experiment, and is denoted as Ω.

• A sample space is discrete if it consists of a finite or countably infinite set of outcomes.

• A sample space is continuous if it contains an interval (either finite or infinite) of real
numbers, vectors or similar objects.

ã An event is a subset of the sample space of a random experiment.

• The union of two events is the event that consists of all outcomes that are contained in
either of the two events or both. We denote the union as E1 ∪ E2.

• The intersection of two events is the event that consists of all outcomes that are contained
in both of the two events. We denote the intersection as E1 ∩ E2.

• The complement of an event in the sample space is the set of outcomes in the sample
space that are not in the event. We denote the complement of the event E as E. The
notation Ec is also used. Note that E ∪ E = Ω.

ã Two events, denoted E1 and E2 are mutually exclusive if: E1 ∩E2 = ∅ where ∅ is called the
empty set or null event.

ã A collection of events, E1, E2, . . . , Ek is said to be mutually exclusive if for all pairs,

Ei ∩ Ej = ∅.

ã The definition of the complement of an event implies that: (Ec)c = E.

ã The distributive law for set operations implies that

(A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C) and (A ∩B) ∪ C = (A ∪ C) ∩ (B ∪ C).

ã DeMorgan’s laws imply that

(A ∪B)c = Ac ∩Bc and (A ∩B)c = Ac ∪Bc.

ã Union and intersection are commutative operations: A∩B = B∩A and A∪B = B∪A.

ã Probability is used to quantify the likelihood, or chance, that an outcome of a random experi-
ment will occur.

ã Whenever a sample space consists of a finite number N of possible outcomes, each equally
likely, the probability of each outcome is 1/N .

ã For a discrete sample space, the probability of an event E, denoted as P (E), equals the sum
of the probabilities of the outcomes in E.

ã If Ω is the sample space and E is any event in a random experiment,

(1) P (Ω) = 1.

(2) 0 ≤ P (E) ≤ 1.

(3) For two events E1 and E2 with E1 ∩ E2 = ∅ (disjoint),

P (E1 ∪ E2) = P (E1) + P (E2).
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(4) P (Ec) = 1− P (E).

(5) P (∅) = 0.

ã The probability of event A or event B occurring is,

P (A ∪B) = P (A) + P (B)− P (A ∩B).

ã If A and B are mutually exclusive events,

P (A ∪B) = P (A) + P (B).

ã For a collection of mutually exclusive events,

P (E1 ∪ E2 ∪ · · · ∪ Ek) = P (E1) + P (E2) + · · ·+ P (Ek).

ã The probability of an event B under the knowledge that the outcome will be in event A is
denoted P (B |A) and is called the conditional probability of B given A.

ã The conditional probability of an event B given an event A, denoted as P (B |A), is

P (B |A) =
P (A ∩B)

P (A)
for P (A) > 0.

ã The multiplication rule for probabilities is: P (A ∩B) = P (B |A)P (A) = P (A |B)P (B).

ã For an event B and a collection of mutual exclusive events, E1, E2, . . . , Ek where their union is
Ω. The law of total probability yields,

P (B) = P (B ∩ E1) + P (B ∩ E2) + · · ·+ P (B ∩ Ek)
= P (B | E1)P (E1) + P (B | E2)P (E2) + · · ·+ P (B | Ek)P (Ek).

ã Two events A and B are independent if any one of the following equivalent statements is true:

(1) P (A |B) = P (A).

(2) P (B |A) = P (B).

(3) P (A ∩B) = P (A)P (B).

Observe that independent events and mutually exclusive events, are completely different
concepts. Don’t confuse these concepts.

ã For multiple events E1, E2, . . . , En are independent if and only if for any subset of these events

P (Ei1 ∩ Ei2 ∩ · · · ∩ Eik) = P (Ei1) P (Ei2) . . . P (Eik).

ã A pseudorandom sequence is a sequence of numbers U1, U2, . . . with each number, Uk depend-
ing on the previous numbers Uk−1, Uk−2, . . . , U1 through a well defined functional relationship
and similarly U1 depending on the seed Ũ0. Hence for any seed, Ũ0, the resulting sequence
U1, U2, . . . is fully defined and repeatable. A pseudorandom sequence often lives within a dis-
crete domain as {0, 1, . . . , 264 − 1}. It can then be normalised to floating point numbers with,

Rk =
Uk

264 − 1
.

ã A good pseudorandom sequence has the following attributes among others:

1. It is quick and easy to compute the next element in the sequence.

2. The sequence of numbers R1, R2, . . . resembles properties as an i.i.d. sequence of uni-
form(0,1) random variables (i.i.d. is defined in Unit 4).

ã Computer simulation of random experiments is called Monte Carlo and is typically carried out
by setting the seed to either a reproducible value or an arbitrary value such as system time.

ã Random experiments may be replicated on a computer using Monte Carlo simulation.
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Distributions

ã A random variable X is a numerical (integer, real, complex, vector, etc.) summary of the
outcome of the random experiment. The range or support of the random variable is the set
of possible values that it may take. Random variables are usually denoted by capital letters.

ã A discrete random variable is an integer/real-valued random variable with a finite (or count-
ably infinite) range.

ã A continuous random variable is a real-valued random variable with an interval (either finite
or infinite) of real numbers for its range.

ã The probability distribution of a random variable X is a description of the probabilities
associated with the possible values of X. There are several common alternative ways to describe
the probability distribution, with some differences between discrete and continuous random
variables.

ã While not the most popular in practice, a unified way to describe the distribution of any scalar
valued random variable X (real or integer) is the cumulative distribution function,

F (x) = P (X ≤ x).

ã It holds that

(1) 0 ≤ F (x) ≤ 1.

(2) limx→−∞ F (x) = 0.

(3) limx→∞ F (x) = 1.

(4) If x ≤ y, then F (x) ≤ F (y). That is, F (·) is non-decreasing.

ã Distributions are often summarised by numbers such as the mean, µ, variance, σ2, or mo-
ments. These numbers, in general do not identify the distribution, but hint at the general
location, spread and shape.

ã The standard deviation of X is σ =
√
σ2 and is particularly useful when working with the

Normal distribution.

ã Given a discrete random variable X with possible values x1, x2, . . . , xn, the probability mass
function of X is,

p(x) = P (X = x).

Note: In [MonRun2014] and many other sources, the notation used is f(x) (as a pdf of a
continuous random variable).

ã A probability mass function, p(x) satisfies:

(1) p(xi) ≥ 0.

(2)

n∑
i=1

p(xi) = 1.

ã The cumulative distribution function of a discrete random variable X, denoted as F (x), is

F (x) =
∑
xi≤x

p(xi).

ã P (X = xi) can be determined from the jump at the value of x. More specifically

p(xi) = P (X = xi) = F (xi)− lim
x↑xi

F (xi).
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ã The mean or expected value of a discrete random variable X, is

µ = E(X) =
∑
x

x p(x).

ã The expected value of h(X) for some function h(·) is:

E
[
h(X)

]
=
∑
x

h(x) p(x).

ã The k’th moment of X is,

E(Xk) =
∑
x

xk p(x).

ã The variance of X, is

σ2 = V (X) = E
(
(X − µ)2

)
=
∑
x

(x− µ)2 p(x) =
∑
x

x2 p(x)− µ2.

ã A random variable X has a discrete uniform distribution if each of the n values in its range,
x1, x2, . . . , xn, has equal probability. I.e.

p(xi) = 1/n.

ã Suppose that X is a discrete uniform random variable on the consecutive integers a, a + 1, a +
2, . . . , b, for a ≤ b. The mean and variance of X are

E(X) =
b+ a

2
and V (X) =

(b− a+ 1)2 − 1

12
.

ã The setting of n independent and identical Bernoulli trials is as follows:

(1) There are n trials.

(1) The trials are independent.

(2) Each trial results in only two possible outcomes, labelled as “success” and “failure”.

(3) The probability of a success in each trial denoted as p is the same for all trials.

ã The random variable X that equals the number of trials that result in a success is a binomial
random variable with parameters 0 ≤ p ≤ 1 and n = 1, 2, . . . . The probability mass function
of X is

p(x) =

(
n

x

)
px(1− p)n−x, x = 0, 1, . . . , n.

ã Useful to remember from algebra: the binomial expansion for constants a and b is

(a+ b)n =
n∑
k=0

(
n

k

)
akbn−k.

ã If X is a binomial random variable with parameters p and n, then,

E(X) = n p and V (X) = n p (1− p).
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ã Given a continuous random variable X, the probability density function (pdf) is a function,
f(x) such that,

(1) f(x) ≥ 0.

(2) f(x) = 0 for x not in the range.

(3)
∞∫
−∞

f(x) dx = 1.

(4) For small ∆x, f(x) ∆x ≈ P (X ∈ [x, x+ ∆x)).

(5) P (a ≤ X ≤ b) =
b∫
a
f(x)dx = area under f(x) from a to b.

ã Given the pdf, f(x) we can get the cdf as follows:

F (x) = P (X ≤ x) =

x∫
−∞

f(u)du for −∞ < x <∞.

ã Given the cdf of a continuous random variable, F (x) we can get the pdf:

f(x) =
d

dx
F (x).

ã The mean or expected value of a continous random variable X, is

µ = E(X) =

∞∫
−∞

x f(x)dx.

ã The expected value of h(X) for some function h(·) is:

E
[
h(X)

]
=

∞∫
−∞

h(x)f(x) dx.

ã The k’th moment of X is,

E(Xk) =

∞∫
−∞

xk f(x) dx.

ã The variance of X, is

σ2 = V (X) = E
(
(X − µ)2

)
=

∞∫
−∞

(x− µ)2f(x)dx =

∫ ∞
−∞

x2f(x) dx− µ2.

ã A continuous random variable X with probability density function

f(x) =
1

b− a
, a ≤ x ≤ b.

is a continuous uniform random variable or “uniform random variable” for short.

ã If X is a continuous uniform random variable over a ≤ x ≤ b, the mean and variance are:

µ = E(X) =
a+ b

2
and σ2 = V (X) =

(b− a)2

12
.
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ã A random variable X with probability density function

f(x) =
1

σ
√

2π
e

−(x−µ)2

2σ2 , −∞ < x <∞,

is a normal random variable with parameters µ where −∞ < µ < ∞, and σ > 0. For this
distribution, the parameters map directly to the mean and variance,

E(X) = µ and V (X) = σ2.

The notation N(µ, σ2) is used to denote the distribution. Note that some authors and software
packages use σ for the second parameter and not σ2.

ã A normal random variable with a mean and variance of:

µ = 0 and σ2 = 1

is called a standard normal random variable and is denoted as Z. The cumulative distri-
bution function of a standard normal random variable is denoted as

Φ(z) = FZ(z) = P (Z ≤ z),

and is tabulated.

ã It is very common to compute P (a < X < b) for X ∼ N(µ, σ2). This is the typical way:

P (a < X < b) = P (a− µ < X − µ < b− µ)

= P
(a− µ

σ
<
X − µ
σ

<
b− µ
σ

)
= P

(a− µ
σ

< Z <
b− µ
σ

)
= Φ

(b− µ
σ

)
− Φ

(a− µ
σ

)
.

We get:

FX(b)− FX(a) = FZ

(b− µ
σ

)
− FZ

(a− µ
σ

)
.

ã The exponential distribution with parameter λ > 0 is given by the survival function,

F (x) = 1− F (x) = P (X > x) = e−λx.

ã The random variable X that equals the distance between successive events from a Poisson process
with mean number of events per unit interval λ > 0.

ã The probability density function of X is

f(x) = λe−λx for 0 ≤ x <∞.

Note that sometimes a different parameterisation, θ = 1/λ is used (e.g. in the Julia Distributions
package).

ã The mean and variance are:

µ = E(X) =
1

λ
and σ2 = V (X) =

1

λ2
.

ã The exponential distribution is the only continuous distribution with range [0,∞) exhibiting the
lack of memory property. For an exponential random variable X,

P (X > t+ s |X > t) = P (X > s).

ã Monte Carlo simulation makes use of methods to transform a uniform random variable in a man-
ner where it follows an arbitrary given distribution. One example of this is if U ∼ Uniform(0, 1)
then X = − 1

λ log(U) is exponentially distributed with parameter λ.

8



Joint Probability Distributions

ã A joint probability distribution of two random variables is also referred to as a bivariate prob-
ability distribution.

ã A joint probability mass function for discrete random variables X and Y , denoted as
pXY (x, y), satisfies the following properties:

(1) pXY (x, y) ≥ 0 for all x, y.

(2) pXY (x, y) = 0 for (x, y) not in the range.

(3)
∑∑

pXY (x, y) = 1, where the summation is over all (x, y) in the range.

(4) pXY (x, y) = P (X = x, Y = y).

ã A joint probability density function for continuous random variables X and Y , denoted as
fXY (x, y), satisfies the following properties:

(1) fXY (x, y) ≥ 0 for all x, y.

(2) fXY (x, y) = 0 for (x, y) not in the range.

(3)
∞∫
−∞

∞∫
−∞

fXY (x, y) dx dy = 1.

(4) For small ∆x, ∆y: fXY (x, y) ∆x∆y ≈ P
(

(X,Y ) ∈ [x, x+ ∆x)× [y, y + ∆ y)
)
.

(5) For any region R of two-dimensional space,

P
(

(X,Y ) ∈ R
)

=
∫∫
R

fXY (x, y) dx dy.

ã A joint probability density function can also be defined for n > 2 random variables (as can
be a joint probability mass function). The following needs to hold:

(1) fX1X2...Xn(x1, x2, . . . , xn) ≥ 0.

(2)
∞∫
−∞

∞∫
−∞

. . .
∞∫
−∞

fX1X2...Xn(x1, x2, . . . , xn)dx1 dx2 . . . dxn = 1.

ã Most of the concepts in this section, carry over from bivariate to general multivariate distribu-
tions (n > 2).

ã The marginal distributions of X and Y as well as the conditional distribution of X given
a specific value Y = y and vice versa can be obtained from the joint distribution.

ã If the random variables X and Y are independent, then fXY (x, y) = fX(x) fY (y) and similarly
in the discrete case.

ã The expected value of a function of two random variables is:

E
[
h(X,Y )

]
=

∫∫
h(x, y)fXY (x, y) dx dy for X,Y continuous.

ã The covariance is a common measure of the relationship between two random variables (say
X and Y ). It is denoted as cov(X,Y ) or σXY , and is given by:

σXY = E
[
(X − µX)(Y − µY )

]
= E(XY )− µXµY .

ã The covariance of a random variable with itself is its variance.
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ã The correlation between the random variables X and Y , denoted as ρXY , is

ρXY =
cov(X,Y )√
V (X)V (Y )

=
σXY
σXσY

.

ã For any two random variables X and Y , −1 ≤ ρXY ≤ 1.

ã If X and Y are independent random variables, σXY = 0 and ρXY = 0. The opposite case does not
always hold: In general ρXY = 0 does not imply independence. But for jointly Normal random
variables it does. In any case, if ρXY = 0 then the random variables are called uncorrelated.

ã When considering several random variables, it is common to consider the (symmetric) Covari-
ance Matrix, Σ with Σi,j = cov(Xi, Xj).

ã The probability density function of a bivariate normal distribution is

fXY (x, y;σX , σY , µX , µY , ρ) =
1

2πσXσY
√

1− ρ2

× exp

{
−1

2(1− ρ2)

[
(x− µX)2

σ2X
− 2ρ(x− µX)(y − µY )

σXσY
+

(y − µY )2

σ2Y

]}
for −∞ < x <∞ and −∞ < y <∞,
with parameters σX > 0, σY > 0, −∞ < µX <∞, −∞ < µY <∞, and −1 < ρ < 1.

ã Given random variables X1, X2, . . . , Xn and constants c1, c2, . . . , cn, the (scalar) linear combi-
nation (with possible affine term b),

Y = c1X1 + c2X2 + · · ·+ cnXn + b

is often a random variable of interest.

ã The mean of the linear combination is the linear combination of the means,

E(Y ) = c1E(X1) + c2E(X2) + · · ·+ cnE(Xn) + b

This holds even if the random variables are not independent.

ã The variance of the linear combination is as follows:

V (Y ) = c21V (X1) + c22V (X2) + · · ·+ c2nV (Xn) + 2
∑
i<j

∑
cicjcov(Xi, Xj).

ã If X1, X2, . . . , Xn are independent (or even if they are just uncorrelated).

V (Y ) = c21V (X1) + c22V (X2) + · · ·+ c2nV (Xn).

ã In case the random variables X1, . . . , Xn were jointly Normal then, Y ∼ Normal
(
E(Y ), V (Y )

)
.

That is, linear combinations of Normal random variables remain Normally distributed.

ã A collection of random variables, X1, . . . , Xn is said to be i.i.d., or independent and iden-
tically distributed if they are mutually independent and identically distributed. This means
that the (n - dimensional) joint probability density is a product of the individual densities.

ã In the context of statistics, a random sample is often modelled as an i.i.d. vector of random
variables. X1, . . . , Xn.

ã An important linear combination associated with a random sample is the sample mean:

X =

∑n
i=1Xi

n
=

1

n
X1 +

1

n
X2 + . . .+

1

n
Xn.

ã If Xi has mean µ and variance σ2 then sample mean (of an i.i.d. sample) has,

E(X) = µ, V (X) =
σ2

n
.
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Descriptive Statistics

ã Descriptive statistics deals with summarizing data using numbers, qualitative summaries,
tables and graphs.

ã Here are some types of data configurations:

1. Single sample: x1, x2, . . . , xn.

2. Single sample over time (time series): xt1 , xt2 , . . . , xtn with t1 < t2 < . . . < tn.

3. Two samples: x1, . . . , xn and y1, . . . , ym.

4. Generalizations from two samples to k samples (each of potentially different sample size,
n1, . . . , nk).

5. Observations in tuples: (x1, y1), (x2, y2), . . . , (xn, yn).

6. Generalizations from tuples to vector observations (each vector of length `),

(x11, . . . , x
`
1), . . . , (x

1
n, . . . , x

`
n).

ã Individual variables may be categorical or numerical. Categorical variables (taking values
in one of several categories) may be ordinal meaning that they can be sorted (e.g. “low”,
“moderate”, “high”), or not (e.g. “cat”, “dog”, “fish”).

ã A statistic is a quantity computed from a sample (assume here a single sample x1, . . . , xn).
Here are very common and useful statistics:

1. The sample mean: x =
x1 + · · ·+ xn

n
=

n∑
i=1

xi

n
.

2. The sample variance: s2 =

n∑
i=1

(xi − x)2

n− 1
=

n∑
i=1

x2i − nx2

n− 1
.

3. The sample standard deviation: s =
√
s2.

4. Order statistics work as follows: Sort the sample to obtain the sequence of sorted ob-
servations, denoted x(1), . . . , x(n) where, x(1) ≤ x(2) ≤ . . . ≤ x(n). Some common order
statistics:

(a) The minimum min(x1, . . . , xn) = x(1).

(b) The maximum max(x1, . . . , xn) = x(n).

(c) The median

median =

{
x(n+1

2
) if n is odd,

1
2

(
x(n

2
) + x(n

2
+1)

)
if n is even.

Note that the median is the 50’th percentile and the 2nd quartile (see below).

(d) The q th quantile (q ∈ [0, 1]) or alternatively the p = 100q percentile (measured in
percents instead of a decimal), is the observation such that p percent of the observations
are less than it and (1−p) percent of the observations are greater than it. In cases (as is
typical) that there is not such a precise observation, it is a linear interpolation between
two neighbouring observations (as is done for the median when n is even). In terms
of order statistics, the q th quantile is approximately (not taking linear interpolations
into account) x([q∗n]). Here [z] denotes the nearest integer in {1, . . . , n} to z.

(e) The first quartile, denoted Q1 is the 25th percentile. The second quartile (Q2) is
the median. The third quartile, denoted Q3 is the 75th percentile. Thus half of the
observations lie between Q1 and Q3. In other words, the quartiles break the sample
into 4 quarters. The difference Q3−Q1 is the interquartile range.

(f) The sample range is x(n) − x(1).
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ã Constructing a Histogram (Equal Bin Widths)

(1) Label the bin (class interval) boundaries on a horizontal scale.

(2) Mark and label the vertical scale with frequencies or counts.

(3) Above each bin, draw a rectangle where height is equal to the frequency (or count).

ã A Kernel Density Estimate (KDE) is a way to construct a Smoothed Histogram. While
construction is not as straightforward as steps (1)–(3) above, automated tools can be used.

ã Both the histogram and the KDE are not unique in the way they summarize data. With these
methods, different settings (e.g. number of bins in histograms or bandwidth in a KDE) may
yield different representations of the same data set. Nevertheless, they are both very common,
sensible and useful visualisations of data.

ã The box plot is a graphical display that simultaneously describes several important features of
a data set, such as centre, spread, departure from symmetry, and identification of unusual
observations or outliers. It is often common to plot several box plots next to each other for
comparison.

ã An anachronistic, but useful way for summarising small data-sets is the stem and leaf diagram.

ã In a cumulative frequency plot the height of each bar is the total number of observations
that are less than or equal to the upper limit of the bin.

ã The Empirical Cumulative Distribution Function (ECDF) is,

F̂ (x) =
1

n

n∑
i=1

1{xi ≤ x}.

Here 1{·} is the indicator function. The ECDF is a function of the data, defined for all x.

ã Given a candidate distribution with cdf F (x), a probability plot is a plot of the ECDF (or
sometimes just it’s jump points) with the y-axis stretched by the inverse of the cdf F−1(·). The
monotonic transformation of the y-axis is such that if the data comes from the candidate F (x),
the points would appear to lie on a straight line. Names of variations of probability plots are
the P-P plot and Q-Q plot (these plots are similar to the probability plot). A very common
probability plot is the Normal probability plot where the candidate distribution is taken to
be Normal(x, s2).

ã The Normal probability plot can be useful in identifying distributions that are symmetric but
that have tails that are “heavier” or “lighter” than the Normal.

ã A time series plot is a graph in which the vertical axis denotes the observed value of the
variable and the horizontal axis denotes time.

ã A scatter diagram is constructed by plotting each pair of observations with one measurement
in the pair on the vertical axis of the graph and the other measurement in the pair on the
horizontal axis.

ã The sample correlation coefficient rxy is an estimate for the correlation coefficient, ρ, pre-
sented in the previous unit:

rxy =

n∑
i=1

(yi − y)(xi − x)√
n∑
i=1

(yi − y)2
n∑
i=1

(xi − x)2

.
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Statistical Inference Ideas

ã Statistical Inference is the process of forming judgements about the parameters of a pop-
ulation, typically on the basis of random sampling.

ã The random variables X1, X2, . . . , Xn are an (i.i.d.) random sample of size n if

(a) the Xi’s are independent random variables and

(b) every Xi has the same probability distribution.

ã A statistic is any function of the observations in a random sample, and the probability distri-
bution of a statistic is called the sampling distribution.

ã Any function of the observation, or any statistic, is also a random variable. We call the
probability distribution of a statistic a sampling distribution. A point estimate of some
population parameter θ is a single numerical value θ̂ of a statistic Θ̂. The statistic Θ̂ is called
the point estimator.

ã The most common statistic we consider is the sample mean, X, with a given value denoted
by x. As an estimator, the sample mean is an estimator of the population mean, µ.

ã Central Limit Theorem (for sample means):
If X1, X2, . . . , Xn is a random sample of size n taken from a population with mean µ and finite
variance σ2 and if X is the sample mean, the limiting form of the distribution of

Z =
X − µ
σ/
√
n

as n→∞, is the standard normal distribution.

ã This implies that X is approximately normally distributed with mean µ and standard devia-
tion σ/

√
n.

ã The standard error of X is given by σ/
√
n. In most practical situations σ is not known but

rather estimated in this case, the estimated standard error, (denoted in typical computer
output as “SE”), is s/

√
n where s is the point estimator,

s =

√√√√√ n∑
i=1

x2i − nx2

n− 1
.

ã Central Limit Theorem (for sums):
Manipulate the central limit theorem (for sample means and use

∑n
i=1Xi = nX. This yields,

Z =

∑n
i=1Xi − nµ√

nσ2
,

which follows a standard normal distribution as n→∞.

ã This implies that
∑n

i=1Xi is approximately normally distributed with mean nµ and vari-
ance nσ2.

ã Knowing the sampling distribution (or the approximate sampling distribution) of a statistic is
the key for the two main tools of statistical inference that we study:

(a) Confidence intervals – a method for yielding error bounds on point estimates.

(b) Hypothesis testing – a methodology for making conclusions about population parame-
ters.
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ã The formulas for most of the statistical procedures use quantiles of the sampling distribu-
tion. When the distribution is N(0, 1) (standard normal), the α quantile is denoted zα and
satisfies:

α =

∫ zα

−∞

1√
2π
e

−x2
2 dx.

A common value to use for α is 0.05 and in procedures the expressions z1−α or z1−α/2 appear.
Note that in this case z1−α/2 = 1.96 ≈ 2.

ã A confidence interval estimate for µ is an interval of the form l ≤ µ ≤ u, where the end-points
l and u are computed from the sample data. Because different samples will produce different
values of l and u, these end points are values of random variables L and U , respectively. Suppose
that

P
(
L ≤ µ ≤ U

)
= 1− α.

The resulting confidence interval for µ is

l ≤ µ ≤ u.

The end-points or bounds l and u are called the lower- and upper-confidence limits (bounds),
respectively, and 1− α is called the confidence level.

ã If x is the sample mean of a random sample of size n from a normal population with known
variance σ2, a 100(1− α)% confidence interval on µ is given by

x− z1−α/2
σ√
n
≤ µ ≤ x+ z1−α/2

σ√
n
.

ã Note that it is roughly of the form, x− 2 SE(x) ≤ µ ≤ x+ 2 SE(x).

ã Confidence interval formulas give insight into the required sample size: If x is used as an
estimate of µ, we can be 100(1−α)% confident that the error |x− µ| will not exceed a specified
amount ∆ when the sample size is not smaller than

n =

(
z1−α/2 σ

∆

)2

.

ã A statistical hypothesis is a statement about the parameters of one or more populations.
The null hypothesis, denoted H0 is the claim that is initially assumed to be true based on
previous knowledge. The alternative hypothesis, denoted H1 is a claim that contradicts the
null hypothesis.

ã For some arbitrary value µ0, a two-sided alternative hypothesis would be expressed as
follows:

H0 : µ = µ0 H1 : µ 6= µ0,

whereas a one-sided alternative hypothesis would be expressed as:

H0 : µ = µ0 H1 : µ < µ0 or H0 : µ = µ0 H1 : µ > µ0.

ã The standard scientific research use of hypothesis is to “hope to reject”H0 so as to have statistical
evidence for the validity of H1.

ã An hypothesis test is based on a decision rule that is a function of the test statistic. For
example: Reject H0 if the test statistic is below a specified threshold, otherwise don’t reject.
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ã Rejecting the null hypothesis H0 when it is true is defined as a type I error. Failing to reject
the null hypothesis H0 when it is false is defined as a type II error.

H0 Is True H0 Is False

Fail to reject H0: No error Type II error

Reject H0: Type I error No error

α = P (type I error) = P (reject H0

∣∣ H0 is true).

β = P (type II error) = P (fail to reject H0

∣∣ H0 is false).

ã The power of a statistical test is the probability of rejecting the null hypothesis H0 when the
alternative hypothesis is true.

ã A typical example of a simple hypothesis test has H0 : µ = µ0 vs. H1 : µ = µ1, where µ0
and µ1 are some specified values for the population mean. This test isn’t typically practical but
is useful for understanding the concepts at hand.

ã Assuming that µ0 < µ1 and setting a threshold, τ , reject H0 if the x > τ , otherwise don’t reject.

ã Explicit calculation of the relationships of τ , α, β, n, σ, µ0 and µ1 is possible in this case.

ã In most hypothesis tests used in practice (and in this course), a specified level of type I error, α
is predetermined (e.g. α = 0.05) and the type II error is not directly specified.

ã The probability of making a type II error β increases (power decreases) rapidly as the true value
of µ approaches the hypothesized value.

ã The probability of making a type II error also depends on the sample size n - increasing the
sample size results in a decrease in the probability of a type II error.

ã The population (or natural) variability (e.g. described by σ) also affects the power.

ã The P -value is the smallest level of significance that would lead to rejection of the null hypothesis
H0 with the given data. That is, the P -value is based on the data. It is computed by considering
the location of the test statistic under the sampling distribution based on H0. It can also be
viewed as the probability of observing a set of data which is as consistent or more consistent
with the alternative hypothesis than the observed data, when the null hypothesis is true.

ã It is customary to consider the test statistic (and the data) significant when the null hypothesis
H0 is rejected; therefore, we may think of the P -value as the smallest α at which the data are
significant. In other words, the P -value is the observed significance level.

ã Clearly, the P -value provides a measure of the credibility of the null hypothesis. Computing the
exact P -value for a statistical test is not always doable by hand.

ã It is typical to report the P -value in studies where H0 was rejected (and new scientific claims
were made). Typical (“convincing”) values can be of the order 0.001.

ã A General Procedure for Hypothesis Tests is

(1) Parameter of interest: From the problem context, identify the parameter of interest.

(2) Null hypothesis, H0: State the null hypothesis, H0.

(3) Alternative hypothesis, H1: Specify an appropriate alternative hypothesis, H1.

(4) Test statistic: Determine an appropriate test statistic.

(5) Reject H0 if: State the rejection criteria for the null hypothesis.

(6) Computations: Compute any necessary sample quantities, substitute these into the equa-
tion for the test statistic, and compute the value.

(7) Draw conclusions: Decide whether or not H0 should be rejected and report that in the
problem context.
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Single Sample Inference

ã The setup is a sample x1, . . . , xn (collected values) modelled by an i.i.d. sequence of random
variables, X1, . . . , Xn.

ã The parameter at question in this unit is the population mean, µ = E[Xi]. A point estimate is
x (described by the random variable X).

ã We devise hypothesis tests and confidence intervals for µ, distinguishing between the (unrealistic
but simpler) case where the population variance, σ2, is known, and the more realistic case where
it is not known and estimated by the sample variance, s2.

ã For very small samples, the results we present are valid only if the population is normally
distributed. But for non-small samples (e.g. n > 20, although there isn’t a clear rule), the
central limit theorem provides a good approximation and the results are approximately correct.

ã Testing Hypotheses on the Mean, Variance Known (Z-Tests)

Model: Xi
i.i.d.∼ N(µ, σ2) with µ unknown but σ2 known.

Null hypothesis: H0 : µ = µ0.

Test statistic: z =
x− µ0
σ/
√
n
, Z =

X − µ0
σ/
√
n

.

Alternative P -value Rejection Criterion
Hypotheses for Fixed-Level Tests

H1 : µ 6= µ0 P = 2
[
1− Φ

(
|z|
)]

z > z1−α/2 or z < zα/2

H1 : µ > µ0 P = 1− Φ
(
z
)

z > z1−α

H1 : µ < µ0 P = Φ
(
z
)

z < zα

ã Note: For H1 : µ 6= µ0, a procedure identical to the preceding fixed significance level test is:

Reject H0 : µ = µ0 if either x < a or x > b

where

a = µ0 − z1−α/2 σ√
n

and b = µ0 + z1−α/2
σ√
n

Compare these results with the confidence interval formula (presented in previous unit):

x− z1−α/2
σ√
n
≤ µ ≤ x+ z1−α/2

σ√
n
.

ã In this case, if H0 is not true and H1 holds with a specific value of µ = µ1, then it is possible to
compute the probability of type II error, β.

ã In the (very realistic) case where σ2 is not known, but rather estimated by S2, we would like to
replace the test statistic, Z, above with,

T =
X − µ0
S/
√
n
,

but in general, T no longer follows a Normal distribution.

ã Under H0 : µ = µ0, and for moderate or large samples (e.g. n > 100) this statistic is approxi-
mately Normally distributed just like above. In this case, the procedures above work well.
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ã But for smaller samples, the distribution of T is no longer Normally distributed. Nevertheless,
it follows a well known and very famous distribution of classical statistics: The Student-t
Distribution.

ã The probability density function of a Student-t Distribution with a parameter v, referred to as
degrees of freedom, is,

f(x ; v) =
Γ
[
(v + 1)/2

]
√
πvΓ(v/2)

· 1[(
x2/v

)
+ 1
](v+1)/2

−∞ < x <∞,

where Γ(·) is the Gamma-function. It is a symmetric distribution about 0 and as v → ∞ it
approaches a standard Normal distribution.

ã The following mathematical result makes the t-distribution useful: Let X1, X2, . . . , Xn be an
i.i.d. sample from a Normal distribution with mean µ and variance σ2. The random variable, T
has a t-distribution with n− 1 degrees of freedom.

ã Now, knowing the distribution of T (and noticing it depends on the sample size, n), allows us
to construct hypothesis tests and confidence intervals when σ2 is not known, analogous to the
(Z-tests and confidence intervals) presented above.

ã If x and s are the mean and standard deviation of a random sample from a normal distribution
with unknown variance σ2, a 100(1− α)% confidence interval on µ is given by

x− t1−α/2,n−1
s√
n
≤ µ ≤ x+ t1−α/2,n−1

s√
n
,

where t1−α/2,n−1 is the 1− α/2 quantile of the t distribution with n− 1 degrees of freedom.

ã A related concept is a 100(1 − α)% prediction interval (PI) on a single future observation
from a normal distribution is given by

x− t1−α/2,n−1s
√

1 +
1

n
≤ Xn+1 ≤ x+ t1−α/2,n−1s

√
1 +

1

n
.

This is the range where we expect the n + 1 observation to be, after observing n observations
and computing x and s.

ã Testing Hypotheses on the Mean, Variance Unknown (T-Tests)

Model: Xi
i.i.d.∼ N(µ, σ2) with both µ and σ2 unknown.

Null hypothesis: H0 : µ = µ0.

Test statistic: t =
x− µ0
s/
√
n
, T =

X − µ0
S/
√
n

.

Alternative P -value Rejection Criterion
Hypotheses for Fixed-Level Tests

H1 : µ 6= µ0 P = 2
[
1− Fn−1

(
|t|
)]

t > t1−α/2,n−1 or t < tα/2,n−1

H1 : µ > µ0 P = 1− Fn−1
(
t
)

t > t1−α,n−1

H1 : µ < µ0 P = Fn−1
(
t
)

t < tα,n−1

Note that here, Fn−1(·) denotes the cdf of the t-distribution with n − 1 degrees of freedom.
As opposed to Φ(·), it is not tabulated in standard tables and like Φ(·) it cannot be explicitly
evaluated. So to calculate P -values, we use software.
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Two Sample Inference

ã The setup is a sample x1, . . . , xn1 modelled by an i.i.d. sequence of random variables, X1, . . . , Xn1

and another sample y1, . . . , yn2 modelled by an i.i.d. sequence of random variables, Y1, . . . , Yn1 .
Observations, xi and yi (for same i) are not paired. In fact, it is possible that n1 6= n2 (unequal
sample sizes).

ã The model assumed is, Xi
i.i.d.∼ N(µ1, σ

2
1), Yi

i.i.d.∼ N(µ2, σ
2
2).

Variations are: (i) equal variances: σ21 = σ22 := σ2. (ii) unequal variances: σ22 6= σ22.

ã We could carry single sample inference for each population separately. Specifically, for µ1 =
E[Xi] and µ2 = E[Yi]. However we focus on,

∆µ := µ1 − µ2 = E[Xi]− E[Yi].

For this difference in means we can carry out inference jointly.

ã It is very common to ask if ∆µ (=, <,>) 0, i.e. if µ1 (=, <,>) µ2. But we can also replace the
“0” with other values, e.g. µ1 − µ2 = ∆0 for some ∆0.

ã A point estimator for ∆µ is X − Y (difference in sample means). The estimate from the data is
denoted by x− y (the difference in the individual sample means), with,

x =
1

n1

n1∑
i=1

xi, y =
1

n2

n2∑
i=1

yi.

ã In the case (ii) of unequal variances: Point estimates for σ21 and σ22 are the individual sample
variances,

s21 =
1

n1 − 1

n1∑
i=1

(xi − x)2, s22 =
1

n2 − 1

n2∑
i=1

(yi − y)2.

ã In case (i) of equal variances, both S2
1 and S2

2 estimate σ2. In this case, a more reliable
estimate can be obtained via the pooled variance estimator

S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2
.

ã In case (i), under H0:

T =
X − Y −∆0

Sp

√
1

n1
+

1

n2

∼ t
(
n1 + n2 − 2

)
.

That is, the T test statistic follows a t-distribution with n1 + n2 − 2 degrees of freedom.

ã In case (ii), under H0, there is only the approximate distribution,

T =
X − Y −∆0√

S2
1

n1
+
S2
2

n2

∼approx t
(
v
)
.

where the degrees of freedom are

v =

(
s21
n1

+
s22
n2

)2

(
s21/n1

)2
n1 − 1

+

(
s22/n2

)2
n2 − 1

.

If v is not an integer, may round down to the nearest integer (for using a table).
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ã Case (i):
Testing Hypotheses on Differences of Mean, Variance Unknown and Assumed Equal
(two sample T-Tests with equal variance)

Model: Xi
i.i.d.∼ N(µ1, σ

2), Yi
i.i.d.∼ N(µ2, σ

2).

Null hypothesis: H0 : µ1 − µ2 = ∆0.

Test statistic: t =
x− y −∆0

sp

√
1

n1
+

1

n2

, T =
X − Y −∆0

Sp

√
1

n1
+

1

n2

.

Alternative P -value Rejection Criterion
Hypotheses for Fixed-Level Tests

H1 : µ1 − µ2 6= ∆0 P = 2
[
1− Fn1+n2−2

(
|t|
)]

t > t1−α/2,n1+n2−2 or t < tα/2,n1+n2−2

H1 : µ1 − µ2 > ∆0 P = 1− Fn1+n2−2
(
t
)

t > t1−α,n1+n2−2

H1 : µ1 − µ2 < ∆0 P = Fn1+n2−2
(
t
)

t < tα,n1+n2−2

ã Case (ii):
Testing Hypotheses on Differences of Mean, Variance Unknown and NOT Equal
(two sample T-Tests with unequal variance)

Model: Xi
i.i.d.∼ N(µ1, σ

2
1), Yi

i.i.d.∼ N(µ2, σ
2
2).

Null hypothesis: H0 : µ1 − µ2 = ∆0.

Test statistic: t =
x− y −∆0√
S2
1

n1
+
S2
2

n2

, T =
X − Y −∆0√

S2
1

n1
+
S2
2

n2

.

Alternative P -value Rejection Criterion
Hypotheses for Fixed-Level Tests

H1 : µ1 − µ2 6= ∆0 P = 2
[
1− Fv

(
|t|
)]

t > t1−α/2,v or t < tα/2,v

H1 : µ1 − µ2 > ∆0 P = 1− Fv
(
t
)

t > t1−α,v

H1 : µ1 − µ2 < ∆0 P = Fv
(
t
)

t < tα,v

ã Case (i) (Equal variances) - confidence interval:

x− y − t1−α/2,n1+n2−2 sp

√
1

n1
+

1

n2
≤ µ1 − µ2 ≤ x− y + t1−α/2,n1+n2−2 sp

√
1

n1
+

1

n2

ã Case (ii) (NOT Equal variances) - confidence interval:

x− y − tα/2,v

√
s21
n1

+
s22
n2

≤ µ1 − µ2 ≤ x− y + tα/2,v

√
s21
n1

+
s22
n2
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Linear Regression

ã The collection of statistical tools that are used to model and explore relationships between
variables that are related in a nondeterministic manner is called regression analysis. Of key
importance is the conditional expectation,

E(Y | x) = µY | x = β0 + β1x with Y = β0 + β1x+ ε,

where x is not random and ε is a Normal random variable with E(ε) = 0 and V (ε) = σ2.

ã Simple Linear Regression is the case where both x and y are scalars, in which case the data
is,

(x1, y1), . . . , (xn, yn).

Then given estimates of β0 and β1 denoted by β̂0 and β̂1 we have

yi = β̂0 + β̂1xi + ei i = 1, 2, . . . , n,

where ei, are the residuals and we can also define the predicted observation,

ŷi = β̂0 + β̂1xi.

Ideally it would hold that yi = ŷi (ei = 0) and thus total mean squared error

L := SSE =

n∑
i=1

e2i =

n∑
i=1

(yi − ŷi)2 =

n∑
i=1

(yi − β̂0 − β̂1xi)2,

would be zero. But in practice, unless σ2 = 0 (and all points lie on the same line), we have that
L > 0.

ã The standard (classic) way of determining the statistics (β̂0, β̂1) is by minimisation of L. The
solution, called the least squares estimators must satisfy

∂L

∂β0

∣∣∣
β̂0β̂1

= −2
n∑
i=1

(yi − β̂0 − β̂1xi) = 0

∂L

∂β1

∣∣∣
β̂0β̂1

= −2

n∑
i=1

(yi − β̂0 − β̂1xi)xi = 0

Simplifying these two equations yields

nβ̂0 + β̂1

n∑
i=1

xi =
n∑
i=1

yi

β̂0

n∑
i=1

xi + β̂1

n∑
i=1

x2i =
n∑
i=1

yixi

These are called the least squares normal equations. The solution to the normal equations
results in the least squares estimators β̂0 and β̂1. Using the sample means, x and y the
estimators are,

β̂0 = y − β̂1x, β̂1 =

n∑
i=1

yixi −

(
n∑
i=1

yi

)(
n∑
i=1

xi

)
n

n∑
i=1

x2i −

(
n∑
i=1

xi

)2

n

.
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ã The following quantities are also of common use:

Sxx =
n∑
i=1

(xi − x)2 =
n∑
i=1

x2i −

(
n∑
i=1

xi

)2

n

Sxy =
n∑
i=1

(yi − y)(xi − x) =
n∑
i=1

xiyi −

(
n∑
i=1

xi
)(

n∑
i=1

yi
)

n

Hence,

β̂1 =
Sxy
Sxx

.

Further,

SST =

n∑
i=1

(yi − y)2, SSR =

n∑
i=1

(ŷi − y)2, SSE =

n∑
i=1

(yi − ŷi)2.

ã The Analysis of Variance Identity is

n∑
i=1

(
yi − y

)2
=

n∑
i=1

(
ŷi − y

)2
+

n∑
i=1

(
yi − ŷi

)2
or,

SST = SSR + SSE .

Also, SSR = β̂1Sxy.

ã An Estimator of the Variance, σ2 is

σ̂2 := MSE =
SSE
n− 2

ã A widely used measure for a regression model is the following ratio of sum of squares, which is
often used to judge the adequacy of a regression model:

R2 =
SSR
SST

= 1− SSE
SST

.

E
(
β̂0

)
= β0, V

(
β̂0

)
= σ2

[
1

n
+

x2

SXX

]

E
(
β̂1

)
= β1, V

(
β̂1

)
=

σ2

SXX
.

ã In simple linear regression, the estimated standard error of the slope and the estimated
standard error of the intercept are

se
(
β̂1

)
=

√
σ̂2

SXX
and se

(
β̂0

)
=

√√√√σ̂2

[
1

n
+

x2

SXX

]
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ã The Test Statistic for the Slope is

T =
β̂1 − β1,0√
σ̂2/SXX

H0 : β1 = β1,0 H1 : β1 6= β1,0

Under H0 the test statistic T follows a t - distribution with “n− 2 degree of freedom”.

ã An alternative is to use the F statistic as is common in ANOVA (Analysis of Variance) – not
covered fully in the course.

F =
SSR/1

SSE/(n− 2)
=
MSR
MSE

.

Under H0 the test statistic F follows an F - distribution with “1 degree of freedom in the
numerator and n− 2 degrees of freedom in the denominator”.

Analysis of Variance Table for Testing Significance of Regression

Source of Sum of Degrees of Mean F0

Variation Squares Freedom Square

Regression SSR = β̂1Sxy 1 MSR MSR/MSE
Error SSE = SST − β̂1Sxy n− 2 MSE
Total SST n− 1

ã There are also confidence intervals for β0 and β1 as well as prediction intervals for observations.
We don’t cover these formulas.

ã To check the regression model assumptions we plot the residuals ei and check for (i) Normality.
(ii) Constant variance. (iii) Independence.

Logistic Regression:

ã Take the response variable, Yi as a Bernoulli random variable. In this case notice that E(Y ) =
P (Y = 1).

ã The logit response function has the form

E
(
Y
)

=
exp(β0 + β1x)

1 + exp
(
β0 + β1x

) .
ã Fitting a logistic regression model to data yields estimates of β0 and β1.

ã The following formula is called the odds

E
(
Y
)

1− E
(
Y
) = exp

(
β0 + β1x

)
.

22



23



24


