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Probability and Monte Carlo

> An experiment that can result in different outcomes, even though it is repeated in the same
manner every time, is called a random experiment.

> The set of all possible outcomes of a random experiment is called the sample space of the
experiment, and is denoted as §2.

e A sample space is discrete if it consists of a finite or countably infinite set of outcomes.

e A sample space is continuous if it contains an interval (either finite or infinite) of real
numbers, vectors or similar objects.

> An event is a subset of the sample space of a random experiment.

e The union of two events is the event that consists of all outcomes that are contained in
either of the two events or both. We denote the union as E; U Es.

e The intersection of two events is the event that consists of all outcomes that are contained
in both of the two events. We denote the intersection as £ N Es.

e The complement of an event in the sample space is the set of outcomes in the sample
space that are not in the event. We denote the complement of the event £ as E. The
notation E¢ is also used. Note that £ U E = Q.

> Two events, denoted E7 and Es are mutually exclusive if: F1 N Ey = & where @ is called the
empty set or null event.

> A collection of events, E1, Es, ..., E}), is said to be mutually exclusive if for all pairs,
ENE; =@.
> The definition of the complement of an event implies that: (E°)¢ = E.
> The distributive law for set operations implies that
(AUB)NC=(AnC)u(BNC(C) and (ANB)UC =(AUuC)Nn(BUCQ).
> DeMorgan’s laws imply that
(AUB) = A°N B° and (ANB)“ = A°UB°.

> Union and intersection are commutative operations: ANB = BNA and AUB = BUA.

> Probability is used to quantify the likelihood, or chance, that an outcome of a random experi-
ment will occur.

> Whenever a sample space consists of a finite number N of possible outcomes, each equally
likely, the probability of each outcome is 1/N.

> For a discrete sample space, the probability of an event F, denoted as P(E), equals the sum
of the probabilities of the outcomes in E.

> If Q) is the sample space and E' is any event in a random experiment,

(1) P(2) =1.

(2) 0<P(E)<1.

(3) For two events Ey and Eo with Ey N Ey = & (disjoint),
P(Ey U Ey) = P(Ey) + P(B).



(4) P(E€)=1—- P(E).
(5) P(0) =o0.
The probability of event A or event B occurring is,
P(AUB)=P(A)+ P(B)— P(AN B).
If A and B are mutually exclusive events,
P(AUB) = P(A)+ P(B).
For a collection of mutually exclusive events,

P(EyUEyU---UEy) = P(Ey) + P(Es) + -+ + P(Ey).

The probability of an event B under the knowledge that the outcome will be in event A is
denoted P(B | A) and is called the conditional probability of B given A.

The conditional probability of an event B given an event A, denoted as P(B | A), is

P(ANB)

P(B|4) = =55

for P(A)>0.

The multiplication rule for probabilities is: P(ANB) = P(B|A)P(A) = P(A|B)P(B).

For an event B and a collection of mutual exclusive events, E1, Eo, ..., E; where their union is
Q). The law of total probability yields,

P(B)=P(BNE1)+P(BNE)+---+ P(BNEg)
= P(B|E1)P(Ey) + P(B| E2)P(Ez) + -+ + P(B | Ex)P(Ej).

Two events A and B are independent if any one of the following equivalent statements is true:
(1) P(A[B) = P(A).
(2) P(B|A)= P(B).
(3) P(ANB) = P(A)P(B).

Observe that independent events and mutually exclusive events, are completely different
concepts. Don’t confuse these concepts.

For multiple events F1, F», ..., E, are independent if and only if for any subset of these events

A pseudorandom sequence is a sequence of numbers Uy, Us, . .. with each number, U, depend-
ing on the previous numbers Ug_1,Uy_o,...,U; through a well defined functional relationship
and similarly U; depending on the seed Up. Hence for any seed, Up, the resulting sequence
Uy, Us, ... is fully defined and repeatable. A pseudorandom sequence often lives within a dis-
crete domain as {0,1,..., 204 _ 1}. It can then be normalised to floating point numbers with,
U
Ry, = ﬁ

A good pseudorandom sequence has the following attributes among others:

1. It is quick and easy to compute the next element in the sequence.

2. The sequence of numbers Rq, Ro,... resembles properties as an ii.d. sequence of uni-
form(0,1) random variables (i.i.d. is defined in Unit 4).

Computer simulation of random experiments is called Monte Carlo and is typically carried out
by setting the seed to either a reproducible value or an arbitrary value such as system time.

Random experiments may be replicated on a computer using Monte Carlo simulation.



Distributions

> A random variable X is a numerical (integer, real, complex, vector, etc.) summary of the
outcome of the random experiment. The range or support of the random variable is the set
of possible values that it may take. Random variables are usually denoted by capital letters.

> A discrete random variable is an integer /real-valued random variable with a finite (or count-
ably infinite) range.

> A continuous random variable is a real-valued random variable with an interval (either finite
or infinite) of real numbers for its range.

> The probability distribution of a random variable X is a description of the probabilities
associated with the possible values of X. There are several common alternative ways to describe
the probability distribution, with some differences between discrete and continuous random
variables.

> While not the most popular in practice, a unified way to describe the distribution of any scalar
valued random variable X (real or integer) is the cumulative distribution function,

F(x) = P(X <x).

> It holds that

1) 0< F(z) <

(1)

(2) limg_,— OOF(:L') = 0.
(3) limy 00 F(x) = 1.
(4

) If x <y, then F(x) < F(y). That is, F'(-) is non-decreasing.

> Distributions are often summarised by numbers such as the mean, y, variance, o2, or mo-

ments. These numbers, in general do not identify the distribution, but hint at the general
location, spread and shape.

> The standard deviation of X is ¢ = Vo2 and is particularly useful when working with the
Normal distribution.

> @Given a discrete random variable X with possible values z1,zo, ..., z,, the probability mass
function of X is,
p(z) = P(X = x).

Note: In [MonRun2014] and many other sources, the notation used is f(z) (as a pdf of a
continuous random variable).

> A probability mass function, p(z) satisfies:

(1) pla:) > 0,
) > ) =1
=1

> The cumulative distribution function of a discrete random variable X, denoted as F(x), is

F(z) =Y p(x).

x; <x
> P(X = z;) can be determined from the jump at the value of x. More specifically

p(zi) = P(X = z;) = F(z;) — lim F(x;).

ztz;



The mean or expected value of a discrete random variable X, is

p=EX) =3 ap().

The expected value of h(X) for some function A(-) is:

E [h(X)] =" h(z)p(a).

The k’th moment of X is,

B(X*) =Y "a"p(a).
x
The variance of X, is

o’ =V(X)=E((X —p)?) = (z—p)’plx) =D 2" plx) - p*.

T

A random variable X has a discrete uniform distribution if each of the n values in its range,
xr1,T9,...,Ty, has equal probability. I.e.

p(z;) = 1/n.

Suppose that X is a discrete uniform random variable on the consecutive integers a,a + 1,a +

2,...,b, for a <b. The mean and variance of X are
b b—a+1)2-1
B(X) = ;a and  V(x) = (L=¢ ; -1

The setting of n independent and identical Bernoulli trials is as follows:

(1) There are n trials.

(1) The trials are independent.

(2) Each trial results in only two possible outcomes, labelled as “success” and “failure”.

(3) The probability of a success in each trial denoted as p is the same for all trials.
The random variable X that equals the number of trials that result in a success is a binomial
random variable with parameters 0 < p <1 and n =1,2,.... The probability mass function
of X is

p(z) = <”>px(1 —p)"T oz =0,1,...,n.

Useful to remember from algebra: the binomial expansion for constants a and b is
" /n
= kbn—k‘
@+oy =3 ( k) a
k=0
If X is a binomial random variable with parameters p and n, then,

E(X)=np and V(X)=np(l—-p).




> Given a continuous random variable X, the probability density function (pdf) is a function,
f(z) such that,

(1) f(z) = 0.
(2) f(x) =0 for x not in the range.
) ] fade=1

(4) For small Az, f(x) Az~ P(X € [z, + Ax)).

(5) Pla< X <b) = fbf(x)dac = area under f(x) from a to b.

a

> Given the pdf, f(x) we can get the cdf as follows:

F(x):P(X<:U):/f(u)du for —00 << 00.

> Given the cdf of a continuous random variable, F'(x) we can get the pdf:

d

fl@) = = F(z).

> The mean or expected value of a continous random variable X, is

o0

uw=FEX)= / x f(z)dx.

—00

> The expected value of h(X) for some function A(-) is:

E[h(X)} - / h(z)f(z) de
> The k’th moment of X is, N
E(X*) = / ¥ f(z) dz
> The variance of X, is h
02 = V(X) = B((X — p)?) = 7@ - wPpes = [ ) do -

> A continuous random variable X with probability density function

flz) = a<z<hbh.

is a continuous uniform random variable or “uniform random variable” for short.
> If X is a continuous uniform random variable over a < x < b, the mean and variance are:

b
/L:E(X):a;_ and o?=V(X)=




> A random variable X with probability density function
1 —e-w?

T) = e 202 | —00 < x < 00,
0=

is a normal random variable with parameters g where —co < p < oo, and o > 0. For this
distribution, the parameters map directly to the mean and variance,

E(X)=p and V(X)=o2

The notation N(u,o?) is used to denote the distribution. Note that some authors and software
packages use o for the second parameter and not o2.

> A normal random variable with a mean and variance of:
pu=0 and o%=1

is called a standard normal random variable and is denoted as Z. The cumulative distri-
bution function of a standard normal random variable is denoted as

O(2) =Fz(z) = P(Z < 2),
and is tabulated.
> [t is very common to compute P(a < X < b) for X ~ N(u,0?). This is the typical way:
Pla<X<b)=Pla—p<X—-—p<b—p)

- p(fgh < S <)
-P(f5t <z <22)
—o(71) o ()

We get:

> The exponential distribution with parameter A > 0 is given by the survival function,
Flz)=1-F(z) = P(X >x) =e .
> The random variable X that equals the distance between successive events from a Poisson process
with mean number of events per unit interval A > 0.
> The probability density function of X is
f(@) =X for 0<z<oo.

Note that sometimes a different parameterisation, § = 1/X is used (e.g. in the Julia Distributions
package).

> The mean and variance are:

1 1
w=FEX)=— and UQZV(X):F'

> The exponential distribution is the only continuous distribution with range [0, c0) exhibiting the
lack of memory property. For an exponential random variable X,

PX>t+s|X >t)=P(X >5s).

> Monte Carlo simulation makes use of methods to transform a uniform random variable in a man-
ner where it follows an arbitrary given distribution. One example of this is if U ~ Uniform(0, 1)
then X = —3log(U) is exponentially distributed with parameter A.



Joint Probability Distributions

> A joint probability distribution of two random variables is also referred to as a bivariate prob-
ability distribution.

> A joint probability mass function for discrete random variables X and Y, denoted as
pxy (z,y), satisfies the following properties:

(1) pxy(z,y) >0 for all z, y.
(2) pxy(z,y) =0 for (x,y) not in the range.

(3) >>> pxv(z,y) = 1, where the summation is over all (z,y) in the range.
(4) pxy(z,y) = P(X =z, Y =y).

> A joint probability density function for continuous random variables X and Y, denoted as
fxv(z,y), satisfies the following properties:

(1) fxy(z,y) >0 for all z, y.
(2) fxy(z,y) =0 for (z,y) not in the range.

(3) T Ofofxy(x,y) dz dy = 1.

(4) For small Az, Ay:  fxy(z,y) Az Ay =~ P((X7 Y)e[z,o+Ax) x [y,y+ Ay))
(5) For any region R of two-dimensional space,

P((X, Y) e R) = [[ fxy(z,y) da dy.
R

> A joint probability density function can also be defined for n > 2 random variables (as can
be a joint probability mass function). The following needs to hold:

(1) leXQ...Xn(x17x27 v 7$n) 2 O
2) | [ fxixe.x, (1,22, ... zy)dey dag .. day, = 1.

> Most of the concepts in this section, carry over from bivariate to general multivariate distribu-
tions (n > 2).

> The marginal distributions of X and Y as well as the conditional distribution of X given
a specific value Y = y and vice versa can be obtained from the joint distribution.

> If the random variables X and Y are independent, then fxy(z,y) = fx(x) fy(y) and similarly
in the discrete case.

> The expected value of a function of two random variables is:
E[h(X, Y)] = // h(z,y) fxy(z,y) dz dy for X, Y continuous.

> The covariance is a common measure of the relationship between two random variables (say
X and Y). Tt is denoted as cov(X,Y) or oxy, and is given by:

oxy = B|(X = px)(Y = py)| = B(XY) = puxpey

> The covariance of a random variable with itself is its variance.



The correlation between the random variables X and Y, denoted as pxy, is

COV(X,Y) oxXy
PXY = = .
V(X)V(Y) oxoy

For any two random variables X and Y, —1 < pxy < 1.

If X and Y are independent random variables, o xy = 0 and pxy = 0. The opposite case does not
always hold: In general pxy = 0 does not imply independence. But for jointly Normal random
variables it does. In any case, if pxy = 0 then the random variables are called uncorrelated.

When considering several random variables, it is common to consider the (symmetric) Covari-
ance Matrix, ¥ with ¥; ; = cov(X;, Xj).

The probability density function of a bivariate normal distribution is
1

fxv(z,y;0x,0v, 1x, by, p) =
( ) 2roxoyy/1 — p?

— L= 2 x — — _ 2
X exp{Z(1 _1p2) [( étx) ~ 2p(z — px)(y — py) . (y 53/) ] }

0% OX0y Ty
for —co < x < 00 and —oo < y < 00,
with parameters ox > 0, oy > 0, —0c0 < ux < 00, —00 < py < 00, and —1 < p < 1.

Given random variables X1, Xo, ..., X,, and constants ci, ca, ..., ¢,, the (scalar) linear combi-
nation (with possible affine term b),

Y=cXi+cXo+ - +cnXn+0b
is often a random variable of interest.
The mean of the linear combination is the linear combination of the means,
E(Y)=cE(X1)+cB(X2) + -+ cnE(X,) +b
This holds even if the random variables are not independent.

The variance of the linear combination is as follows:

V(Y)=EV(X1)+ AV (Xa) + - + AV (Xp) +2 Z Z cicjeov(Xi, X;).
1<J

If X1, Xs,...,X, are independent (or even if they are just uncorrelated).

V(Y)=AV(X) +AEV(X) + -+ AV(Xy).

In case the random variables X1, ..., X, were jointly Normal then, Y ~ Normal (E(Y), V(Y)).
That is, linear combinations of Normal random variables remain Normally distributed.

A collection of random variables, X1, ..., X, is said to be i.i.d., or independent and iden-
tically distributed if they are mutually independent and identically distributed. This means
that the (n - dimensional) joint probability density is a product of the individual densities.

In the context of statistics, a random sample is often modelled as an i.i.d. vector of random
variables. X1,...,X,.

An important linear combination associated with a random sample is the sample mean:
> i1 Xi
Y — =1 [

1 1 1
n n n n

If X; has mean p and variance o2 then sample mean (of an i.i.d. sample) has,

0.2

EX)=p VX)) =2,

n

10



Descriptive Statistics

> Descriptive statistics deals with summarizing data using numbers, qualitative summaries,
tables and graphs.

> Here are some types of data configurations:

1
2
3.
4

ot

. Single sample: x1,x2,...,Z,.

. Single sample over time (time series): @y, Tiy, ..., Ty, With t1 <ty < ... < t,.
Two samples: z1,...,x, and y1,...,Ym.

. Generalizations from two samples to k samples (each of potentially different sample size,
nNy... ,nk).
Observations in tuples: (z1,y1), (z2,%2), -, (Tn,Yn)-

6. Generalizations from tuples to vector observations (each vector of length /),

(x%,...,m{),...,(wl ...,xz).

n’ n

> Individual variables may be categorical or numerical. Categorical variables (taking values
in one of several categories) may be ordinal meaning that they can be sorted (e.g. “low”,
“moderate”, “high”), or not (e.g. “cat”, “dog”, “fish”).

> A statistic is a quantity computed from a sample (assume here a single sample x1,...,x,).
Here are very common and useful statistics:

1.

2.

3.
4.

> Ti
_ r1+---+tx, i=1
The sample mean: = = =
n n
n n
(z; —2)* Y2} —n7?
. =1 =1
The sample variance: s> = * =1
n—1 n—1

The sample standard deviation: s = V/s2.

Order statistics work as follows: Sort the sample to obtain the sequence of sorted ob-

servations, denoted z(y),...,x () where, x(q) < () < ... < x(,). Some common order
statistics:

(a) The minimum min(z1,...,7,) = ().

(b) The maximum max(z1,...,Ty) = T(,).

(¢) The median

Tin if n is odd,
median = {1(—;1)

Q(l‘(%) + $(%+1)) if n is even.

Note that the median is the 50’th percentile and the 2nd quartile (see below).

(d) The gth quantile (¢ € [0,1]) or alternatively the p = 100g percentile (measured in
percents instead of a decimal), is the observation such that p percent of the observations
are less than it and (1—p) percent of the observations are greater than it. In cases (as is
typical) that there is not such a precise observation, it is a linear interpolation between
two neighbouring observations (as is done for the median when n is even). In terms
of order statistics, the ¢th quantile is approximately (not taking linear interpolations
into account) z([44n))- Here [z] denotes the nearest integer in {1,...,n} to z.

(e) The first quartile, denoted Q1 is the 25th percentile. The second quartile (Q2) is
the median. The third quartile, denoted ()3 is the 75th percentile. Thus half of the
observations lie between @1 and Q3. In other words, the quartiles break the sample
into 4 quarters. The difference Q3 — @1 is the interquartile range.

(f) The sample range is z(,) — 7).

11



Constructing a Histogram (Equal Bin Widths)

(1) Label the bin (class interval) boundaries on a horizontal scale.
(2) Mark and label the vertical scale with frequencies or counts.

(3) Above each bin, draw a rectangle where height is equal to the frequency (or count).

A Kernel Density Estimate (KDE) is a way to construct a Smoothed Histogram. While
construction is not as straightforward as steps (1)—(3) above, automated tools can be used.

Both the histogram and the KDE are not unique in the way they summarize data. With these
methods, different settings (e.g. number of bins in histograms or bandwidth in a KDE) may
yield different representations of the same data set. Nevertheless, they are both very common,
sensible and useful visualisations of data.

The box plot is a graphical display that simultaneously describes several important features of
a data set, such as centre, spread, departure from symmetry, and identification of unusual
observations or outliers. It is often common to plot several box plots next to each other for
comparison.

An anachronistic, but useful way for summarising small data-sets is the stem and leaf diagram.

In a cumulative frequency plot the height of each bar is the total number of observations
that are less than or equal to the upper limit of the bin.

The Empirical Cumulative Distribution Function (ECDF) is,

n

Pz) = % S 1w < o).

i=1
Here 1{-} is the indicator function. The ECDF is a function of the data, defined for all .

Given a candidate distribution with cdf F(x), a probability plot is a plot of the ECDF (or
sometimes just it’s jump points) with the y-axis stretched by the inverse of the cdf F~!(-). The
monotonic transformation of the y-axis is such that if the data comes from the candidate F(x),
the points would appear to lie on a straight line. Names of variations of probability plots are
the P-P plot and Q-Q plot (these plots are similar to the probability plot). A very common
probability plot is the Normal probability plot where the candidate distribution is taken to
be Normal(z, s2).

The Normal probability plot can be useful in identifying distributions that are symmetric but
that have tails that are “heavier” or “lighter” than the Normal.

A time series plot is a graph in which the vertical axis denotes the observed value of the
variable and the horizontal axis denotes time.

A scatter diagram is constructed by plotting each pair of observations with one measurement
in the pair on the vertical axis of the graph and the other measurement in the pair on the
horizontal axis.

The sample correlation coefficient r,, is an estimate for the correlation coefficient, p, pre-
sented in the previous unit:

=1
\/i(yz - 7)? i(wz —z)?
i=1 =1

12



Statistical Inference Ideas

> Statistical Inference is the process of forming judgements about the parameters of a pop-
ulation, typically on the basis of random sampling.

> The random variables X1, Xs,..., X, are an (i.i.d.) random sample of size n if

(a) the X;’s are independent random variables and

(b) every X; has the same probability distribution.

> A statistic is any function of the observations in a random sample, and the probability distri-
bution of a statistic is called the sampling distribution.

> Any function of the observation, or any statistic, is also a random variable. We call the
probability distribution of a statistic a sampling distribution. A point estimate of some
population parameter 6 is a single numerical value 0 of a statistic ©. The statistic © is called
the point estimator.

> The most common statistic we consider is the sample mean, X, with a given value denoted
by Z. As an estimator, the sample mean is an estimator of the population mean, .

> Central Limit Theorem (for sample means):
If X1, Xo,..., X, is a random sample of size n taken from a population with mean p and finite
variance o2 and if X is the sample mean, the limiting form of the distribution of

X
~o/vn

as n — 00, is the standard normal distribution.

Z

> This implies that X is approximately normally distributed with mean p and standard devia-

tion o /+/n.

> The standard error of X is given by o/y/n. In most practical situations o is not known but
rather estimated in this case, the estimated standard error, (denoted in typical computer
output as “SE”), is s/y/n where s is the point estimator,

> Central Limit Theorem (for sums):
Manipulate the central limit theorem (for sample means and use Y . ; X; = nX. This yields,

7 — i Xi—np
no? ’

which follows a standard normal distribution as n — oo.

> This implies that Y., X; is approximately normally distributed with mean np and vari-

ance TLUZ.

> Knowing the sampling distribution (or the approximate sampling distribution) of a statistic is
the key for the two main tools of statistical inference that we study:

(a) Confidence intervals — a method for yielding error bounds on point estimates.

(b) Hypothesis testing — a methodology for making conclusions about population parame-
ters.

13



> The formulas for most of the statistical procedures use quantiles of the sampling distribu-
tion. When the distribution is N(0,1) (standard normal), the o quantile is denoted z, and

satisfies:
Za 1 7w2
o= / e 2 dwx.
oo V2T

A common value to use for a is 0.05 and in procedures the expressions z1_q or z1_,/p appear.
Note that in this case z;_,/5 = 1.96 ~ 2.

> A confidence interval estimate for u is an interval of the form [ < pu < u, where the end-points
[ and u are computed from the sample data. Because different samples will produce different
values of [ and u, these end points are values of random variables L and U, respectively. Suppose
that
P(LSMSU):l—a.

The resulting confidence interval for y is
[ <p<u.

The end-points or bounds [ and u are called the lower- and upper-confidence limits (bounds),
respectively, and 1 — « is called the confidence level.

> If z is the sample mean of a random sample of size n from a normal population with known
variance o2, a 100(1 — a)% confidence interval on y is given by

_ g _ o
T — Zl*a/Qﬁ < M <z+ ZI,Q/QW.

> Note that it is roughly of the form, T — 2 SE(Z) < u <7+ 2 SE(Z).

> Confidence interval formulas give insight into the required sample size: If z is used as an
estimate of p, we can be 100(1 — )% confident that the error |Z — p| will not exceed a specified
amount A when the sample size is not smaller than

2
n= (212/2 U) .

> A statistical hypothesis is a statement about the parameters of one or more populations.
The null hypothesis, denoted Hy is the claim that is initially assumed to be true based on
previous knowledge. The alternative hypothesis, denoted H; is a claim that contradicts the
null hypothesis.

> For some arbitrary value pg, a two-sided alternative hypothesis would be expressed as
follows:

Hyo:p=po  Hi:p# po,

whereas a one-sided alternative hypothesis would be expressed as:
Ho:p=po Hyp < po or Ho:p=po Hy oy > po.

> The standard scientific research use of hypothesis is to “hope to reject” Hy so as to have statistical
evidence for the validity of Hj.

> An hypothesis test is based on a decision rule that is a function of the test statistic. For
example: Reject Hy if the test statistic is below a specified threshold, otherwise don’t reject.

14



> Rejecting the null hypothesis Hy when it is true is defined as a type I error. Failing to reject
the null hypothesis Hy when it is false is defined as a type II error.

Hy Is True Hy Is False
Fail to reject Hy: No error Type II error
Reject Hy: Type I error No error

a = P(type I error) = P(reject Hy ‘ Hj is true).
B = P(type II error) = P(fail to reject Hy ‘ H is false).

> The power of a statistical test is the probability of rejecting the null hypothesis Hy when the
alternative hypothesis is true.

> A typical example of a simple hypothesis test has Hy : u = puo vs. Hi:p = pi, where pyg
and p; are some specified values for the population mean. This test isn’t typically practical but
is useful for understanding the concepts at hand.

> Assuming that pg < p1 and setting a threshold, 7, reject Hy if the T > 7, otherwise don’t reject.

> Explicit calculation of the relationships of 7, a, 8, n, o, po and pq is possible in this case.

> In most hypothesis tests used in practice (and in this course), a specified level of type I error, «
is predetermined (e.g. « = 0.05) and the type II error is not directly specified.

> The probability of making a type II error 5 increases (power decreases) rapidly as the true value
of u approaches the hypothesized value.

> The probability of making a type II error also depends on the sample size n - increasing the
sample size results in a decrease in the probability of a type II error.

> The population (or natural) variability (e.g. described by o) also affects the power.

> The P-value is the smallest level of significance that would lead to rejection of the null hypothesis
Hy with the given data. That is, the P-value is based on the data. It is computed by considering
the location of the test statistic under the sampling distribution based on Hy. It can also be
viewed as the probability of observing a set of data which is as consistent or more consistent
with the alternative hypothesis than the observed data, when the null hypothesis is true.

> Tt is customary to consider the test statistic (and the data) significant when the null hypothesis
Hy is rejected; therefore, we may think of the P-value as the smallest « at which the data are
significant. In other words, the P-value is the observed significance level.

> (learly, the P-value provides a measure of the credibility of the null hypothesis. Computing the
exact P-value for a statistical test is not always doable by hand.

> It is typical to report the P-value in studies where Hy was rejected (and new scientific claims
were made). Typical (“convincing”) values can be of the order 0.001.

> A General Procedure for Hypothesis Tests is

1) Parameter of interest: From the problem context, identify the parameter of interest.
Null hypothesis, Hy: State the null hypothesis, Hy.

Alternative hypothesis, Hi: Specify an appropriate alternative hypothesis, Hj.

)
)
4) Test statistic: Determine an appropriate test statistic.
) Reject Hj if: State the rejection criteria for the null hypothesis.
)

Computations: Compute any necessary sample quantities, substitute these into the equa-
tion for the test statistic, and compute the value.

(7) Draw conclusions: Decide whether or not Hy should be rejected and report that in the
problem context.
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Single Sample Inference

> The setup is a sample x1,...,z, (collected values) modelled by an i.i.d. sequence of random
variables, X1,...,X,.

> The parameter at question in this unit is the population mean, p = E[X;]. A point estimate is
T (described by the random variable X).

> We devise hypothesis tests and confidence intervals for 1, distinguishing between the (unrealistic
but simpler) case where the population variance, o2, is known, and the more realistic case where
it is not known and estimated by the sample variance, s2.

> For very small samples, the results we present are valid only if the population is normally
distributed. But for non-small samples (e.g. n > 20, although there isn’t a clear rule), the
central limit theorem provides a good approximation and the results are approximately correct.

> Testing Hypotheses on the Mean, Variance Known (Z-Tests)
Model: X, "R N(u,o?) with g unknown but o2 known.
Null hypothesis:  Hp : = po-

I T — o X — o

Test statistic: e Z = ——F.
est statistic z o/ o/

Alternative P-value Rejection Criterion
Hypotheses for Fixed-Level Tests
Hy:p# o P:2[1—<I>(|z])] 2> 21_q/2 OF 2< Z4/2
Hy:p> o P:1—<I>(z) zZ> 2Z_q
Hy:p < po P:<I>(z) z < Zg

> Note: For Hy : u # g, a procedure identical to the preceding fixed significance level test is:

Reject Hg : = po if either T<aorZ>b
where

a =y — Zl_a/gﬁ and b= po+ Zl—a/Qﬁ

Compare these results with the confidence interval formula (presented in previous unit):
_ o _ o
T — Zl—a/2% SpSTH+ Zl—a/2%'

> In this case, if Hg is not true and H; holds with a specific value of u = pq, then it is possible to
compute the probability of type II error, f3.

> In the (very realistic) case where o2 is not known, but rather estimated by S2, we would like to

replace the test statistic, Z, above with,
X —
T — Mo7
S/v/n

but in general, T no longer follows a Normal distribution.

> Under Hy : 1 = po, and for moderate or large samples (e.g. n > 100) this statistic is approxi-
mately Normally distributed just like above. In this case, the procedures above work well.
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> But for smaller samples, the distribution of 7" is no longer Normally distributed. Nevertheless,
it follows a well known and very famous distribution of classical statistics: The Student-t
Distribution.

> The probability density function of a Student-t Distribution with a parameter v, referred to as
degrees of freedom, is,
I'i(v+1)/2 1
f(z;v) I )/] — 00 < x < 00,

~ /Tl (v)2) {(wQ/v) N 1} (wt1)/2

where I'(+) is the Gamma-function. It is a symmetric distribution about 0 and as v — oo it
approaches a standard Normal distribution.

> The following mathematical result makes the t¢-distribution useful: Let X7, Xo,..., X, be an
i.i.d. sample from a Normal distribution with mean p and variance o2. The random variable, T'
has a t-distribution with n — 1 degrees of freedom.

> Now, knowing the distribution of 7' (and noticing it depends on the sample size, n), allows us
to construct hypothesis tests and confidence intervals when o2 is not known, analogous to the
(Z-tests and confidence intervals) presented above.

> If Z and s are the mean and standard deviation of a random sample from a normal distribution
with unknown variance o2, a 100(1 — @)% confidence interval on 4 is given by
_ 5 _ s
T — tlfa/2,n71% SpsSTH tl—a/z,nqﬁ,
where t1_, /2,1 is the 1 — a/2 quantile of the ¢ distribution with n — 1 degrees of freedom.

> A related concept is a 100(1 — «)% prediction interval (PI) on a single future observation
from a normal distribution is given by

/ 1 / 1
T — tl,a/Q’n,ls 1 + ﬁ S Xn+1 S T+ tl,a/z,n,ls 1 + ;

This is the range where we expect the n + 1 observation to be, after observing n observations
and computing T and s.

> Testing Hypotheses on the Mean, Variance Unknown (T-Tests)
Model: X; i N(u,o?) with both p and 02 unknown.

Null hypothesis:  Hp : pp = po-

T — po 7o X~ Ho

Test statistic: t=—— = —

est statistic S/ S/vn
Alternative P-value Rejection Criterion
Hypotheses for Fixed-Level Tests
Hy:p# po P =2[1—-F, 1(]t])] t >t a/2n-1 00t <tajan
H : > o P=1-F,; (t) t> tl—a,n—l
Hy : H < o P=F,1 (t) t < ta,nfl

Note that here, F,,_1(-) denotes the cdf of the t-distribution with n — 1 degrees of freedom.
As opposed to ®(-), it is not tabulated in standard tables and like ®(-) it cannot be explicitly
evaluated. So to calculate P-values, we use software.
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Two Sample Inference

> The setup is a sample z1, ..., z,, modelled by ani.i.d. sequence of random variables, Xi,..., X,,
and another sample y1, ..., y,, modelled by an i.i.d. sequence of random variables, Y7,...,Y,,.
Observations, x; and y; (for same ¢) are not paired. In fact, it is possible that n; # ng (unequal
sample sizes).

> The model assumed is, X; P N(p1,0%), Y; s N(p2,03).

Variations are: (i) equal variances: o? = 03 := o2 (ii) unequal variances: 03 # 03.

> We could carry single sample inference for each population separately. Specifically, for pu; =
E[X;] and puy = E[Y;]. However we focus on,

Ay = — p2 = E[Xi] — E[Yi].
For this difference in means we can carry out inference jointly.

> It is very common to ask if A, (=,<,>) 0, i.e. if u; (=, <,>) po. But we can also replace the
“0” with other values, e.g. p1 — s = Ag for some Ag.

> A point estimator for A, is X —Y (difference in sample means). The estimate from the data is
denoted by T — 7 (the difference in the individual sample means), with,

1 & 1 &
=1 =1

> In the case (ii) of unequal variances: Point estimates for 0% and o3 are the individual sample

variances,
2 1 & 2 2 1 & 2
Slznl_lz(iﬂi—@a 32:n2_12(yi—?)-
i=1 i=1

> In case (i) of equal variances, both S} and S3 estimate 0.

estimate can be obtained via the pooled variance estimator

In this case, a more reliable

g2 _ (m—1)Si+(n2 —1)53
p ny+no —2 '
> In case (i), under Hy:
X-Y-A
T=""2"20 iy tne—2).

1 1
Spy | — + —
ny o n2

That is, the T test statistic follows a t-distribution with n; + ny — 2 degrees of freedom.
> In case (ii), under Hy, there is only the approximate distribution,

P £ Y

where the degrees of freedom are

(i) ()’

n1—1 TLQ—l

If v is not an integer, may round down to the nearest integer (for using a table).
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> Case (i):

Testing Hypotheses on Differences of Mean, Variance Unknown and Assumed Equal
(two sample T-Tests with equal variance)

Model:

Null hypothesis:

i.4.d.

X; K i.4.d.

N(M1702)7 sz ~

Ho : p1 — p2 = Ao

N(M%UQ)'

T—75—A X-Y-A

Test statistic: t= M, T=>2"" "0
1 N 1 g 1 R 1

o] — 1+ — =

b ni N9 P ni n2
Alternative P-value Rejection Criterion
Hypotheses for Fixed-Level Tests
H1 L1 — U2 75 AO P= 2[1 - Fn1+n272(|t‘)] t>t _a/2mnyd4ng—2 ©F t<ta/aniiny—2

Hy:pn —p2 > Ay

H1:#1*LL2<A0

P=1-Fp yn,—2(t)

P = Fy 4no—2 (t)

t> tlfa,n1+n272

t < ta,n1 +ng—2

> Case (ii):

Testing Hypotheses on Differences of Mean, Variance Unknown and NOT Equal
(two sample T-Tests with unequal variance)

1.0.d. i.0.d.

Model: X; " N(py,0?), Y; "X N(pg,03).
Null hypothesis: Hy: pp — pg = Ao.
T—-7—A X-Y-A

Test statistic: t= w, "

|S? 52 S? S2

1 72 1 72

ni no ni n2
Alternative P-value Rejection Criterion
Hypotheses for Fixed-Level Tests
Hy:pn—po# Do P =2[1-F(|])] t>tape Or t<ta,
leul—u2>A0 PZl—Fv(t) t>t1_aﬂ,
Hliﬂl—/L2<A0 P:Fv(t) t<ta,v

> Case (i) (Equal variances) - confidence interval:

_ 1 1 o 1 1
r—Y— tlfa/2,n1+n272 Sp 7171 + ;2 < - 2 < T—-y+ tlfa/2,n1+n272 Sp a + n72

> (Case (ii) (NOT Equal variances) - confidence interval:

82 82 82 32
T—7—1 22 < — < z—y+t 2,22
r—Yy a/2v ny ny H1 — M2 r—y a/2v n Ny
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Linear Regression

> The collection of statistical tools that are used to model and explore relationships between
variables that are related in a nondeterministic manner is called regression analysis. Of key
importance is the conditional expectation,
EY |z)=py |, =00+ fx  with Y =P+ Biw+e,

where z is not random and ¢ is a Normal random variable with E(e) = 0 and V(¢) = o2.

> Simple Linear Regression is the case where both x and y are scalars, in which case the data
is,
(1'17 y1)7 SRR (xnv yn)
Then given estimates of Sy and (1 denoted by Bo and Bl we have

yi=Po+Pwi+e  i=1,2,...,n,
where e;, are the residuals and we can also define the predicted observation,
Ui = BO + Bl%‘-
Ideally it would hold that y; = 9; (e; = 0) and thus total mean squared error

n

L:= 88 = Ze = Z — ) = Z(yi — Bo — Buz:)?,

=1 =1

would be zero. But in practice, unless 02 = 0 (and all points lie on the same line), we have that
L >0.

> The standard (classic) way of determining the statistics (BO, 31) is by minimisation of L. The
solution, called the least squares estimators must satisfy

oL

Rl R — Byas) =0
B0 8o Z 50 lx )

OL A .

22l . = 2 i — Po — i)z =0
Tl =2 20 e

Simplifying these two equations yields

n n
nBo +3129€¢ = Zyi
i=1

i1
n n n

5 A 2

Bo E x; + B E x; = E YiT;
P =1 i=1

These are called the least squares normal equations. The solution to the normal equations
results in the least squares estimators 5y and ;. Using the sample means, T and 7 the
estimators are,
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> The following quantities are also of common use:

Hence,

Further,

n n n

SSr=> (wi—-u?%  SSk=>_Hi—-9>  SSe=)_(yi—9)"

=1 =1 =1

> The Analysis of Variance Identity is

i(yi_y>2 :i<@i_y>2+i (yi—@i)Q

=1 =1 =1
or,
SSr =SSk + SSk.
Also, SSp = (184,

> An Estimator of the Variance, o2 is

SSE

6% := MSp =
n—2

> A widely used measure for a regression model is the following ratio of sum of squares, which is
often used to judge the adequacy of a regression model:

_SSr _, _ S8

2 _ = -
R - SSr SSr

B() = V()L
E(Bl) = 1, V<B1) = S(jx-

> In simple linear regression, the estimated standard error of the slope and the estimated
standard error of the intercept are

~2

w(5) = e )]
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> The Test Statistic for the Slope is

B — Bro

\/62/5')()(

Hy: p1=pio Hy: B # Bio
Under Hy the test statistic T follows a t - distribution with “n — 2 degree of freedom”.

> An alternative is to use the F' statistic as is common in ANOVA (Analysis of Variance) — not
covered fully in the course.
SSr/1 MSr

F = = .
SSp/(n—2)  MSg

Under Hj the test statistic F' follows an F - distribution with “1 degree of freedom in the
numerator and n — 2 degrees of freedom in the denominator”.

Analysis of Variance Table for Testing Significance of Regression

Source of Sum of Degrees of Mean Fj
Variation Squares Freedom Square

Regression SSg zﬁlSmy 1 MSg MSr/MSg
Error SSE =881 —B1Szy n—2 MSg

Total SSt n—1

> There are also confidence intervals for By and 1 as well as prediction intervals for observations.
We don’t cover these formulas.

> To check the regression model assumptions we plot the residuals e; and check for (i) Normality.
(ii) Constant variance. (iii) Independence.

Logistic Regression:

> Take the response variable, Y; as a Bernoulli random variable. In this case notice that E(Y) =
P(Y =1).

> The logit response function has the form

_exp(fBo + Biw)
2(r) - 1+ exp(fo + Ara)

> Fitting a logistic regression model to data yields estimates of 5y and ;.

> The following formula is called the odds

B(v) (

m = exp| fo + 51$)-
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Standard Normal Cumulative Probabilities

4 00 01 02 03 04 05 Rl 07 08 09 F4 00 01 02 .03 04 05 06 07 08 049
-3.4 0003 0003 0R 0003 0003 003 0003 0003 0003 0002 0.0 A000 0 50400 SDRO S120 51600 5199 5239 5279 5319 5359
-3.3 0005 0005 0005 0004 0004 0004 0004 0004 0004 0003 0.1 5308 5438 5478 3517 5557 5506 5636 5675 5714 5753
-3.2 0007 0007 0006 0006 0006 0006 0006 0005 0005 0005 0.2 5793 5832 5B71 5910 5048 5987 6026 6064 6103 614
-31 000 0009 0009 0000 0008 0008 0008 0008 0007 0007 0.3 A179 6217 6255 B293 6331 A3AE A40R 6443 R4B0 6517
=3.0 0013 0013 0013 0012 M2 M1 000 00l o010 0010 0.4 A554 6591 6628 6664 6700 6TI6 6772 6HOB 0R44 6ETO
—-2.9 0019 008 0018 0017 0016 0016 0015 0015 0014 0014 0.5 HO15 6950 6985 7019 T054 TORR 7123 TIST O TI90 7224

2.8 0026 0025 0024 0023 0023 0022 0021 0021 0020 0019 0.6 J257 7291 (7324 7357 (T3RO 7422 7454 7486 7517 7549
—-2.7 0035 34 0033 0032 0031 0030 0029 0028 0027 0026 0.7 5800 7611 7R42 7673 TT04 7T 7764 7794 TR23 THS2
—2.6 0047 45 0044 0043 0041 0040 0039 0038 0037 0036 0.8 8RR 79100 7939 7967 7995 BOZ3 ROSL RDTE RID6 8133
-2.5 0062 0060 0059 0057 0055 0054 0052 0051 0049 0048 0.9 &159  RIS6 %212 R238 8264 82RO R3I5 B340 R365  BIRO
—-2.4 D082 D0RD DOTR 0075 0073 0071 0069 0068 0066 0064 1.0 B413 B438 B4R1 B4RS 8508 8531 .RSS4 8577 BS99 8A2)

2.3 0107 0104 0102 009 0096 0094 0091 0089 ODRT (084 1.1 BH43 R663  R6R6  RTOR 8729 8749 HTIO 8790 BRI0 8R30
—-2.2 0139 36 0132 0129 0125 0122 011e 0lle 113 0110 1.2 G849 RB60  BRBE  .BQ0T7 8925 8044 BO62 O30 .B9OT7 9015

2.1 0179 0174 0170 0166 0162 0158 0154 0130 0146 0143 1.3 9032 9049 9066 9082 0099 9115 9131 9147 9162 9177

2.0 0228 0222 0217 0212 0207 0202 0197 0192 0188 0183 1.4 9192 9207 9272 49236 9251 9265 9279 9292 9306 9319

1.9 0287 0281 0274 0268 0262 0256 0250 0244 0239 0233 1.5 0332 9345 0357 8370 9382 0304 0406 9418 0429 u4d)
—-1.8 0359 0351 0344 0336 0329 0322 0314 0307 0301 0204 1.6 0452 9463 9474 0484 0405 0505 0515 0535 0535 9545
-1.7 446 0436 0427 0418 0409 04001 0392 0384 0375 0367 1.7 9554 9564 9573 GSR2 9591 9599 0608 9616 0625 9A33

1.6 0548 0537 0526 0516 0305 0495 (M85 0475 (4AS  IM55 1.8 9641 9649 9656 9664 9671 9678 068G 9693 U699 9706
-1.5 0668 0655 0643 0630 0618 0606 0594 0582 05T 0559 1.9 OTIZ 9719 9726 9732 9738 9744 0750 9756 0761 9767
-1.4 0808 0793 0778 0764 0749 0735 0721 0708 0604 0681 2.0 9773 97TE 9783 GTRR 9793 979% 08D 9808 OR12 9817
-1.3 0968 0951 0934 0918 0901 0885 0869 0BS3 OK38 0823 2.1 G821 9826 9830 U834 9838 9842 UB46 9850 UBS4  9RST
-1.2 151 1130 1012 L1093 1075 1056 1038 1020 1003 (95 2.2 O8A1  OR6d4  ON6R  ORT71 OR75  ORTE  UBR1  OHR4  URRT 9800
-1.1 357 1335 03140 01292 1271 L1251 L1230 1210 1190 1170 2.3 O%03 9896  OROS 9901 9004 9006 0909 9911 0913 906
-1.0 587 1562 L1530 L1515 492 1469 L1446 1423 1401 1379 2.4 9918 9920 9922 9925 9027 9929 093] 9932 9934 9936
—-0.9 R4l IR14 0 LITRE 1762 1736 L1711 L1685 L1660 L1635 .16l 2.5 0038 0040 9941 9943 9045 9046 0048 0949  095] 9952
—0.8 21100 2000 2061 2033 2005 L1977 1949 1922 1RG4 1867 2.6 9953 09955 9956 9957 9050 9060 0961 9962 0963 9964
=0.7 L2420 2380 2358 2327 2297 2266 2236 2206 2177 2148 2.7 9965 9966 9967 9963 996 9070 0971 9972 0973 9974
~0.6 2743 2700 2R7A 0 2643 2611 2578 2346 2514 2483 2451 28 9974 9975 9976 Y977 9977 9Y7R U979 9979 9RO 9uR]
—=0.5 3085 30500 3015 2981 2946 2912 2877 2843 2EI0 2776 2.9 0081 0081 0083 COK3 0O0R4  OOR4 OUSS 0085 OURG 9086
=0.4 Adde 3409 0 33720 3336 0 3300 3264 3228 3192 3156 3121 3.0 D987 9987 9987 0988 O0RR 900 0080 9980 0990 9000

0.3 GR21 ATR3 3745 3707 3669 3632 3394 3557 3520 34R3 3.1 Q990 9991 9991 G991 9992 9992 0992 9992 9993 9993

-0.2 4207 4168 4129 4090 4052 4013 3974 3936 3897 3859 3.2 9993 0993 9904 Q994 9094 0004 9994 94995 0995 9095
-0.1 A602 4562 4522 4483 4447 4404 4364 4325 4286 4247 3.3 0995 0095 9996 0905 9006 0006 0096 9996 0995 9007
=0.0 S000 4060 4020 ARR0  4RID  AR01 4761 4721 4681 4641 3.4 9997 9997 9997 9997 9097 9007 0097 99097 0097 O00%

This table was gencrated using the “CDF" command in Minitab.
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f-Distribution Quantiles

v Q1.9) Q(.95) QL975} Q1.99) Q1.995) Q(.999) Q1.9995)
1| 3.078 6.314 12.706 31.821 63.657 318.317 636.607
2 | 1.886 2.920 4.303 6.963 9.925 22,327 31.598
3 | 1.638 2353 3.182 4.541 5.841 10.215 12.924
4 | 1.533 2.132 2.776 3.747 4,604 7.173 8.610
5 | 1.476 2.015 2571 3.363 4032 5.893 6.869
6 | 1.440 1.943 2.447 3.143 3,707 5.208 5.959
7| 1415 1.895 2.365 2.998 3,499 4,785 5.408
8 | 1.397 1.860 2.306 2.896 3.355 4.501 5.041
9 | 1.383 1.833 2.262 2.821 3.250 4.297 4.781

10 | 1372 1.812 2.228 2.764 3.169 4,144 4.587

11 1.363 1.796 2,201 2718 3.106 4.025 4.437

12 | 1.356 1.782 2.179 2,681 3.055 3.930 4,318

13 | 1.350 1.771 2.160 2.650 3.012 3.852 4,221

14 | 1.345 1.761 2.145 2.624 2.977 3.787 4.140

15 1341 1.753 2,131 2,602 2.947 3.733 4.073

16 1.337 1.746 2,120 2.583 2.921 3.686 4,015

17 | 1333 1.740 2110 2.567 2.808 3.646 3.965

18 | 1.330 1.734 2,101 2.552 2.878 3.610 3.922

19 | 1.328 1.729 2.093 2539 2.861 3579 3,882

20 | 1.325 1.725 2.086 2,528 2.845 3.552 3.849

21 | 1323 1.721 2.080 2,518 2.831 3.527 3.819

22 | 1.321 1.717 2.074 2.508 2819 3.505 3.792

23 | 1319 1.714 2,069 2.500 2.807 3,485 3.768

24 | 1.318 1.711 2.064 2.492 2.797 3.467 3,745

25 | 1316 1.708 2.060 2.485 2,787 3,450 3,725

26 | 1315 1.706 2.056 2479 27179 3.435 3,707

27 | 1314 1.703 2.052 2473 2771 3.421 3.690

28 | 1.313 1.701 2,048 2.467 2.763 3.408 3.674

29 | 1311 1.699 2.045 2.462 2.756 3.396 3.650

30 | 1310 1.697 2.042 2.457 2.750 3.385 3.646

40 | 1303 1.684 2.021 2.423 2.704 3.307 3.551

60 | 129 1.671 2.000 2.390 2.660 3.232 3.460

120 | 1289 1.658 1.980 2.358 2617 3.160 3.373
= | 1.282 1.645 1.960 2.326 2.576 3.090 3.201

This table was generated using the “INVCDF”

command in Minitah.
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