Question 1. Concrete

An article on *Concrete Research* from 1989 presented data on compressive strength x and intrinsic permeability y of various concrete mixes and cures. Summary quantities are:

$$n = 15, \sum_{i=1}^{15} y_i = 570, \sum_{i=1}^{15} y_i^2 = 22, \sum_{i=1}^{15} x_i = 45, \sum_{i=1}^{15} x_i^2 = 155, \sum_{i=1}^{15} x_i y_i = 1691.$$

Assume that permeability is linearly related to compressive strength.

- (a) Calculate the least squares estimates of the slope and intercept.
- (b) Use the equation of the fitted line to predict what permeability would be observed when the compressive strength is x = 41.

Question 2. Renewable Energy

The file "A6-2.csv" contains information on renewable energy in US States published by the U.S. Energy Information Administration, available on

 $\label{eq:https://dasl.datadescription.com/datafile/alternative-energy-2016/?_sfm_cases=4+59943\&sf_paged=2.$ The column "Ren.Elec.GW.h." refers to the percentage of renewable electricity in Gigawatt hours and the column "Pct.Renewable.incl.Hydro" refers to the percentage of renewable energy with Hydropower.

- (a) Assuming that a simple linear regression model is appropriate, use R to obtain the least squares fit estimators relating "*Pct.Renewable.incl.Hydro*" to "*Ren.Elec.GW.h.*".
- (b) Plot the data points in a scatter plot and add your linear regression curve. Comment on the appropriateness of the model.

Question 3. Blood Pressure

The data set "A6-3.csv" contains the blood pressure (BP) and weight (Weight) of 20 individuals.

- (a) Plot a scatter diagram of the data. Does the straight-line regression model seem to be plausible?
- (b) Calculate the error sum of squares, commonly denoted by SS_E . Then use this value to estimate the variance σ^2 .

Question 4. Regression without the Intercept Term

Assume that we have n pairs of data $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$.

- (a) Suppose that the appropriate model is $Y = \beta x + \epsilon$ (no intercept). Provide an equation to estimate β .
- (b) Do you suspect the model $Y = \beta x + \epsilon$ to fit better or worse than $Y = \beta_1 x + \beta_0 + \epsilon$ to a general data set? Explain briefly.

Question 5. Intrinsically Linear

Decide which of the following relations between Y > 0 and x > 0 are intrinsically linear, where ϵ is a random variable (not necessarily Gaussian). If they are intrinsically linear, provide the function that transforms the equation into a linear relation.

(a)
$$Y = \frac{\beta_0}{\beta_1 x + \beta_2 + \beta_0 \epsilon}$$

(b)
$$Y = \left(e^{\beta_1 x + \beta_2 + \epsilon}\right) \beta_0$$

Question 6. Water Vapor Pressure

The file "A6-6.csv" contains the temperature (K) and vapor pressure (mm Hg) of 11 samples.

- (a) Plot a scatter diagram of the data. What type of relation between the temperature and vapor pressure do you suspect?
- (b) Use an appropriate transformation to fit a linear model to the (transformed) data, relating (transformed) vapor pressure to the (transformed) temperature. Clearly state the transformation you applied as well as the resulting least square estimates $\hat{\beta}_0, \hat{\beta}_1$.

Question 7. t-Test for Regression Models

Consider the following data on the number of pounds of steam (y) used by a chemical plant and the average temperature (x) in Fahrenheit.

Temp	21	24	32	47	50	59
Usage	$ \begin{array}{c} 21 \\ 185.79 \end{array} $	214.47	288.03	424.84	454.58	539.03
Temp	68	74	62	50	41	30
Usage	$68 \\ 621.5$	675.06	562.03	452.93	369.95	273.98

Test the hypothesis $H_0: \beta_1 = 0$ against $H_1: \beta_1 \neq 0$ using the *t*-test with $\alpha = 0.05$.

Question 8. Beauty of a Proof II

Given observations (y_1, y_2, \ldots, y_n) and their predictions $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ $(i = 1, 2, \ldots, n)$, where x_i are observed variables $i = 1, \ldots, n$, $\hat{\beta}_0$ is the least square estimate of the intercept and $\hat{\beta}_1$ is the least square estimate of the slope. Show that

$$\sum_{i=1}^{n} (y_i - \hat{y}_i) = 0.$$

(*Hint: Use the structure of* \hat{y}_i and recall the equations for $\hat{\beta}_0$ and $\hat{\beta}_{1.}$)

Thank you for a great semester!

Thank you for your feedback to improve the STAT2201 lectures and my teaching style, I appreciate it very much.