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Chapter 11: Simple Linear Regression

• Aim: Study or analysis of the relationship between two or more variables

e.g. Pressure of a gas in a container versus its temperature

We examine a dependent variable and one or more independent

variables (= predictors).

=⇒ Regression Analysis

• Key importance (conditional expectation):

E[Y | x] = µY |x

Suppose for now, the variable Y depends linearly on only one predictor, i.e.:

E[Y | x] = µY |x = β0 + β1x
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=⇒

Y = β0 + β1x+ ε,

where:

• x is a (non-random) predictor, and

• ε is a R.V.(=noise) with E[ε] = 0, Var(ε) = σ2.

Assumptions:

• Normality of residuals,

• Constant variance, and,

• Independence of observations

Method:

• Collect data:

(x1, y1), . . . , (xn, yn).

• Assume linear relation:

y ≈ β0 + β1x ↔ y = β0 + β1x+ ε

• Since we do not have all possible tuples, we can only estimate β0 and β1

by β̂0 and β̂1, respectively, i.e.,

yi = β̂0 + β̂1xi + ei, i = 1, . . . , n.

• ei = residual.

Use β̂0, β̂1 for predictions.

ŷ = β̂0 + β̂1x.
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Note that we can also compute predicted observations for our data (xi, yi){1≤i≤n}.

Ideally, we would like to find β̂0 and β̂1, such that yi = ŷi, that is, ei = 0.

Much more likely:

1 D <- read.delim("amazon -books.txt")

2 plot(D$NumPages , D$Thick)

3 abline(lm(D$Thick~D$NumPages), col=’red’)
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Total mean squared error

Total Mean Squared Error:

L = SSE =

n∑
i=1

e2i =

n∑
i=1

(yi − ŷi)2 =

n∑
i=1

(yi − β̂0 − β̂1xi)2

The least squares estimators

• To find the best estimators β̂0 and β̂1, we would like to minimize

L =

n∑
i=1

(yi − β0 − β1xi)2.

• Specifically, solve β̂0, β̂1 = argminβ0,β1

∑n
i=1 (yi − β0 − β1xi)2.

• The solution, called the least squares estimators must satisfy:

Since we want to minimize L, we take the (partial) derivative and set them

equal to zero.

0 =
∂

∂β0
L =

∂

∂β0

n∑
i=1

(yi − β0 − β1xi)2 =

n∑
i=1

∂

∂β0
(yi − β0 − β1xi)2 =

n∑
i=1

2 (yi − β0 − β1xi) (−1)

0 =
∂

∂β1
L =

n∑
i=1

∂

∂β1
(yi − β0 − β1xi)2 =

n∑
i=1

2 (yi − β0 − β1xi) (−xi)
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The least squares solution

Using the sample means, x and y

x =
1

n

n∑
i=1

xi, y =
1

n

n∑
i=1

yi,

the estimators are:

β̂0 = y − β̂1x

β̂1 =

∑n
i=1 xiyi −

(
∑n
i=1 xi)(

∑n
i=1 yi)

n∑n
i=1 x

2
i −

(
∑n
i=1 xi)

2

n
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Additional quantities of interest

SXX =

n∑
i=1

(xi − x)
2

=

SXY =

n∑
i=1

(xi − x) (yi − y) =

That is,

β̂1 =

∑n
i=1 xiyi −

(
∑n
i=1 xi)(

∑n
i=1 yi)

n∑n
i=1 x

2
i −

(
∑n
i=1 xi)

2

n

=
SXY
SXX

.

In addition, we have:

SST =

n∑
i=1

(yi − y)
2

=

SSR =

n∑
i=1

(ŷi − y)
2

=

SSE =

n∑
i=1

(ŷi − yi)2 =

It holds that

SST = SSR + SSE ,
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The Analysis of Variance

• We did not consider the final unknown parameter in our regression model:

Y = β0 + β1x+ ε,

namely, the Var(ε) = σ2.

• We use the residuals ei = ŷi − yi, to obtain an estimate of σ2.

• Specifically,

SSE =

n∑
i=1

(ŷi − yi)2,

and it can be shown that

E[SSE ] = (n− 2)σ2,

so:

σ̂2 =
SSE
n− 2

.

How good is my regression model?

A widely used measure for a regression model is the following ratio of sum of

squares, which is often used to judge the adequacy of a regression model:

R2 =
SSR
SST

= 1− SSE
SST

,
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Properties of least square estimator

E[β̂0] = β0, Var
(
β̂0

)
= σ2

[
1

n
+

x2

SXX

]
,

E[β̂1] = β1, Var
(
β̂1

)
=

σ2

SXX
,

Therefore, the estimated standard error of the slope and the estimated standard

error of the intercept are:

se
(
β̂0

)
=

√
σ2

[
1

n
+

x2

SXX

]
,

se
(
β̂1

)
=

√
σ2

SXX
.

EXAMPLE

A study considers the microstructure of the ultrafine powder of partially stabi-

lized zirconia as a function of temperature. The data is as follows:

x (Temperature) 1100 1200 1300 1100 1500 1200 1300

y (Porosity) 30.8 19.2 6.0 13.5 11.4 7.7 3.6
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Find the least square estimators β̂0 and β̂1.

Estimate the porosity for a temperature of 1400 degrees Celcius.
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Find SSE (= error sum of squares).

Find the least square estimates for y with respect to the predictor x∗i = xi+x̄.
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Hypothesis tests in linear regression

• Suppose we would like to test:

H0 : β1 = β1,0, H1 : β1 6= β1,0.

• The Test Statistic for the Slope is

T =
β̂1 − β1,0√

σ̂2

SXX

.

• Under H0, the test statistic T follows a t - distribution with n− 2 degree

of freedom.

• Reject H0 if |t| > tα
2 ,n−2

• Suppose we would like to test:

H0 : β0 = β0,0, H1 : β0 6= β1,0.

• The Test Statistic for the intercept is

T =
β̂0 − β0,0√
σ̂2
[
1
n + x2

SXX

] .

• Under H0, the test statistic T follows a t - distribution with n− 2 degree

of freedom.

• Reject H0 if |t| > tα
2 ,n−2
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An important special case of the hypotheses is:

H0 : β1 = 0, H1 : β1 6= 0.

If we fail to reject H0 : β1 = 0, this indicates that there is no linear

relationship between x and y.

Example:

Suppose we have 20 samples regarding oxygen purity (y) with respect to hydro-

carbon levels (x) such that

20∑
i=1

xi = 23.92,

20∑
i=1

yi = 1, 843.21, x̄ = 1.1960, ȳ = 92.1605

20∑
i=1

y2i = 170, 044.5321,

20∑
i=1

x2i = 29.2892,

20∑
i=1

xiyi = 2, 214.6566

Test: H0 : β1 = 0 H1 : β1 6= 0

for α = 0.01.
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The F distribution

• An alternative is to use the F statistic as is common in ANOVA (Analysis

of Variance) (not covered fully in the course).

• Under H0, the test statistic

F =
SSR/1

SSE/(n− 2)
=
MSR
MSE

,

follows an F - distribution with 1 degree of freedom in the numerator and

n− 2 degrees of freedom in the denominator.

• Here,

MSR = SSR/1, MSE = SSE/(n− 2).
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Analysis of Variance Table for Testing Significance of Re-

gression

Additional remarks

• There are also confidence intervals for β̂0 and β̂1 as well as prediction

intervals for observations. We do not cover these formulas.

• To check the regression model assumptions, we plot the residuals ei and

check for:

– Normality,

– Constant variance, and,

– Independence

Transformations

Non-linear models can sometimes be “intrinsically” linear.

Examples:

• Y = β0x
β1ε, where ε ∼ N(0, σ2).

Why is this “intrinsically” linear?
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• Y = β0 + β1x+ ε, where ε ∼ N(0, σ2).

Why is this “intrinsically” linear?

Boyle’s Law

1 D <- read.delim("boyle.txt")

2 plot(D$Height , D$Pressure , pch =16)
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1 plot(log(D$Height), log(D$Pressure), pch =16)

Logistic Regression

• Take the response variable, Yi as a Bernoulli random variable.

• In this case notice that E[Y ] = P (Y = 1).

• The logit response function has the form

E[Y ] =
eβ0+β1x

1 + eβ0+β1x
.

• Fitting a logistic regression model to data yields estimates of β0 and β1.

• The following formula is called the odds:

E[Y ]

1− E[Y ]
= eβ0+β1x.

Example:

Source: https://dasl.datadescription.com/datafiles/? sf s=stream& sfm cases=4+59943

1 D <- read.delim("streams.txt")

2 D1 <- D %>% mutate(lime = ifelse(Substrate ==’Limestone ’ ,1,0)

3 plot(D1$pH, D1$lime , pch =16)
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Multiple Regression

What if there are more variables that explain the value of the output?

−→ Use multiple regression models

Example - revisited:

1 pairs(~pH+Hard+Alkali , data=D)
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Try to fit the following linear model:

Y = β0 + β1x1 + β2x2 + ε

with ε ∼ N(0, σ2) and y = Hard, x1 = pH, x2 = Alkali.

As before, we set up

L =
∑
i

(yi − ŷi)2 =
∑
i

(yi − β̂0 − β̂1x1,i − β̂2x2,i)2

and try to minimize it.

As before, we find the critical value by setting the partial derivatives equal to

zero, that is

0 =
∂

∂β0
L =

∑
i

2(yi − β̂0 − β̂1x1,i − β̂2x2,i)(−1)

0 =
∂

∂β1
L =

∑
i

2(yi − β̂0 − β̂1x1,i − β̂2x2,i)(−x1,i)

0 =
∂

∂β2
L =

∑
i

2(yi − β̂0 − β̂1x1,i − β̂2x2,i)(−x2,i)

which simplifies to

0 = nȳ − β̂0 − β̂1x̄1 − β̂2x̄2

0 =
∑
i

yix1,i − β̂0nx̄1 − β̂1
∑
i

x21,i − β̂2
∑
i

x2,ix1,i

0 =
∑
i

yix2,i − β̂0nx̄2 − β̂1
∑
i

x1,ix2,i − β̂2
∑
i

x22,i

Solving these three equations for the three unknowns β̂0, β̂1, β̂2 yields the esti-

mators.
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Back to example:

n = 172,
∑
i yi = 24441,

∑
i x1,i = 1259,

∑
i x2,i = 17022,

∑
i x

2
1,i = 9251,∑

i x
2
2,i = 2338721

∑
i x1,ix2,i = 128275,

∑
i yix1,i = 184664,

∑
i yix2,i = 3316930.
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In general, one could express the problem in Matrix notation:

So we have ~y = X~β + ~ε

Aim: Find ~β so that L =
∑
i ε

2
i = ~εT~ε is minimal

We have XTX~β = XT~y
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