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Chapter 11: Simple Linear Regression

e Aim: Study or analysis of the relationship between two or more variables

e.g. Pressure of a gas in a container versus its temperature

We examine a dependent variable and one or more independent
variables (= predictors).

— Regression Analysis

e Key importance (conditional expectation):

Suppose for now, the variable Y depends linearly on only one predictor, i.e.:

EY | z] = py|o = Bo + Brz



Y =00+ bz +e
where:
e z is a (non-random) predictor, and
e cis a R.V.(=noise) with E[¢] = 0, Var(e) = o2.
Assumptions:
e Normality of residuals,
e Constant variance, and,

e Independence of observations
Method:

e Collect data:

(wlay1)7 ey (xn7yn)

e Assume linear relation:

Yy~ Bo+ i > y=P0o+ iz +e

e Since we do not have all possible tuples, we can only estimate 5y and S

by BO and Bl, respectively, i.e.,

yi = Bo+ Brzi + e, i=1,...,n.

e ¢; = residual.

Use BO, Bl for predictions.
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Note that we can also compute predicted observations for our data (;, yi>{1§i§n}~

Ideally, we would like to find BO and Bl, such that y; = y;, that is, e; = 0.
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D <- read.delim("amazon-books.txt")
plot (D$NumPages, D$Thick)

abline (lm(D$Thick "D$NumPages), col=’red’)




Total mean squared error
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The least squares estimators

e To find the best estimators 5’0 and 31, we would like to minimize
n
L=Y (yi—Bo—Bw:)”.
i=1

e Specifically, solve Bo, Br = argming, g S (yi — Bo— ﬂlxz) .

e The solution, called the least squares estimators must satisfy:
Since we want to minimize L, we take the (partial) derivative and set them

equal to zero.

O - 5’750L = 5 Z (yi — Bo — Pri)* = ﬁ(yi = Bo = Brz:)? = 2(yi — Bo — frz:) (‘—})
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The least squares solution

Using the sample means, x and y

the estimators are:

2711 Ty — (22;1 zl)(Z?:l yl)
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Additional quantities of interest

sz’ S_('zn, = SXX:i(:vi—f)zz Z./X«:'” %Y 43{1) = ZX.Z" EZYX'.‘V ZYZ

That is,

n _ - 2 — 2_ :,2
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It holds that
SSt =SSk + SSE,



The Analysis of Variance

e We did not consider the final unknown parameter in our regression model:

Y = ﬂO + ﬁlm +e
namely, the Var(e) = o2

e We use the residuals e; = 9; — 15, to obtain an estimate of 2.

e Specifically,

and it can be shown that L I{ , )
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How good is my regression model?

A widely used measure for a regression model is the following ratio of sum of

squares, which is often used to judge the adequacy of a regression model:
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Properties of least square estimator

=2

E[fo] = Bo, Var (30) =0° [1 + o ] ;

n  Sxx

0.2

E[8i] = 1, Var (31) =

- 9
Sxx

Therefore, the estimated standard error of the slope and the estimated standard

error of the intercept are:

EXAMPLE
A study considers the microstructure of the ultrafine powder of partially stabi-

lized zirconia as a function of temperature. The data is as follows:

x (Temperature) 1100 1200 1300 1100 1500 1200 1300
y (Porosity) 30.8 19.2 6.0 135 114 7.7 3.6

Y= 12439 g= I3 14
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Find the least square estimators BO and 31.
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Estimate the porosity for a temperature of 1400 degrees Celcius.
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Find SSg (= error sum of squares).

§5= S, - (g‘,ng = 385523

f,= - 0.034k

bt SQ Syr-ngt = 13333-3 (3,

Find the least square gstimates for y with respect to the pr g,gt T; = T;+T.
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o Under Hy, the test statistic T" follows a t - distribution with n — 2 degree

Hypothesis tests in linear regression

e Suppose we would like to test:

Ho:p1=P510, Hi:B1#PBio. Q’SI‘M‘\{&L

— ——

(‘CCcd]

e The Test Statistic for the Slope is =

A 1= X‘-’ -
T 51 510 - fi:&l‘j_ S{V\
EZ»

XX

of freedom.

Reject Ho if [t| > ta , o "l'[_, é;h-l c - -[‘£ (N-1
—_

Suppose we would like to test:
Hy: Bo=Boo, Hi:Bo# PBio-

The Test Statistic for the intercept is

r—_ Bo—Boo Bo — oo —-(30 BJ.O
R TR )

Under Hy, the test statistic T follows a ¢ - distribution with n — 2 degree

of freedom.

Reject Hy if [¢]| > te n—2
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An important special case of the hypotheses is:

Hy:p81=0, Hy:B#0.

If we fail to reject Hy : f1 = 0, this indicates that there is no linear

relationship between x and y.

Example:
Suppose we have 20 samples regarding oxygen purity (y) with respect to hydro-

carbon levels (x) such that

20 20

> owi=2392, ) yi=1,84321, T=11960, §=092.1605
=1 =1

20 20 20

D yP=170,044.5321, ) a7 =20.2802, ) iy = 2,214.6566

=1 =1 =1
Test: Hy: fBi1 =0 Hi: p1#0 nz=20
_ - (
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Sexe= 2% = ¥ = 1.1 - 20 (1.\\9)*

The F' distribution

e An alternative is to use the F statistic as is common in ANOVA (Analysis

of Variance) (not covered fully in the course).

e Under Hy, the test statistic

Fo SSr/1  MSg

- SSp/(n—2)  MSg’

1<

¥ follows an F - distribution with 1 degree of freedom in the numerator and
°©
v n — 2 degrees of freedom in the denominator.
-~

°
= e Here,

MSRZSSR/I, MSEZSSE/(TL—Q).
—
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( . . . .
Analysis of Variance Table for Testing Significance of Re-
gression

®

&

L4 Source of Sum of Degrees of Mean Fy

8 Variation Squares Freedom Square

"; Regression SSp = 315my 1 MSgr MSgr/MSEg

- Error SSp =SSt — 1Sy, n—2 MSg
L Total SSt n—1

Additional remarks

e There are also confidence intervals for BO and Bl as well as prediction

intervals for observations. We do not cover these formulas.

e To check the regression model assumptions, we plot the residuals e; and

check for:

— Normality, .
— Constant variance, and, S e (0\ &" ) (\-\dnmﬁ—
W d ot

— Independence

Transformations

Non-linear models can sometimes be “intrinsically” linear.

Examples: L'—'7 Can a ef‘a '\}Q Jrﬂ'\i{ﬂﬂﬂ\(};\o w
o Y = BoxPre, where € ~ N(0,0?). . NM
’ NQ:J\OV\ 3

Why is this “intrinsically” hnear7
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o Y =3y + fiz + ¢, where e ~ N(0,02).

Why is this “intrinsically” linear?
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Boyle’s Law

D <- read.delim("boyle.txt")

plot (D$Height , D$Pressure, pch=16)
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plot(log(D$Height), log(D$Pressure), pch=16)

log(D$Pressre)
34 36 38 40 42 44 46 48

T T T T T T T
26 28 30 32 34 36 38

log(D$Height)

Logistic Regression

e Take the response variable, Y; as a Bernoulli random variable.

In this case notice that E[Y] = P(Y = 1). °

The logit response function has the form

Fitting a logistic regression model to data yields estimates of 3y and ;.

The following formula is called the odds:

E[Y] — pbPothiz
1-— E[Y] ’

Example:

Source: hitps://dasl.datadescription.com/datafiles/?_sf-s=streamé _sfm_cases=4+59943

D <- read.delim("streams.txt")
D1 <- D %>% mutate(lime = ifelse(Substrate==’Limestone’,1,0)

plot (D1$pH, D1$lime, pch=16)
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Multiple Regression

What if there are more variables that explain the value of the output?

— Use multiple regression models

Example - revisited:

pairs ("pH+Hard+Alkali,

data=D)
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Follow‘oa matenol ok fovered A clss.

e

Try to fit the following linear model:

Y = B0+ Bix1 + Paxa + €

with € ~ N(0,02) and y = Hard, z; = pH, 2o = Alkali.

As before, we set up

L= (yi—0:)*=> (i — Bo— Prz1i — Powa;)?

i i
and try to minimize it.

As before, we find the critical value by setting the partial derivatives equal to

zero, that is
aﬂoL Zl: Bo - me - 32132,1)(—1)
351 L Z Bo - Blﬂfu - 32172,1')(*531,1‘)

8,62L Z BO - Blmu - B2$2,i)(_$2,i)

which simplifies to

0=ng — o — pr1#1 — Pai

0= Zyﬂl,i — Bondy — B ZCC%Z — By Zm,m,i
i i i

0= Zyzﬂfzz — fonZz — B 2961 iT2,i — 5QZ$QZ

Solving these three equations for the three unknowns BO, Bl, BQ yields the esti-

mators.
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Back to example:
n=172,>",y; = 24441, %", x1,; = 1259, . xo,;, = 17022, ", x%l = 9251,
Zi f%,i = 2338721 Zz X1,4L2,5 = 128275, 21 YiZii = 184664, 21 YiZ2 i = 3316930.
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In general, one could express the problem in Matrix notation:

Sowehaveg':Xﬁ_'—i—g

Aim: Find f so that L =Y, €2 = & € is minimal

We have XT X3 = X7y
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