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Descriptive Statistics

• Visualisation of the data.

• Analysis and presentation of characteristics of the data.

Data types

Possible data types:

1. Continuous quantitative data−→ values in continuous range (height, width,

length, temperature, humidity, volume, area, and price)

2. Discrete qualitative data (factor / categorical variable) −→ values in dis-

crete range (number of family members, gender (male or female), count

of objects).

Discrete Sub-types:
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• Nominal factors = variables without order, such as males and females.

• Ordinal factors = variable with a certain order, such as age group.

Data configurations

• Many possible data configurations

• Each configuration will consist of continuous and discrete (ordinal and

nominal) variables.

• Major configuration types:

– A single sample configuration consists of m scalars:

D = {x1, x2, . . . , xm}.

Nr of fisherman per day; m = 365 and xi = 0, 1, . . ..

– Two (or more) sets of samples:

D =
{ {

x11, . . . , x
1
m1

}
,
{
x21, . . . , x

2
m2

}
, . . . ,

{
xk1 , . . . , x

k
mk

} }
.

Nr of fisherman per day in k different regions.

– Data tuples: D = {(x1,1, x1,2), (x2,1, x2,2), . . . , (xm,1, xm,2)}.

xi,1 = Nr of fisherman at ith day, xi,2 is the number of fishing nets

used at day i.

– Generalization of tuples to vectors:

D = {(x1,1, . . . , x1,n), . . . , (xm,1, . . . , xm,n)}

xi,1 = Nr of fisherman at ith day, xi,2 is the number of fishing nets

used at day i, xi,3 = Sea-Surface temperature at day i, etc.
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1. Data tables

The table rows represent observed measurements for independent variables

(columns).

Observ. variable 1 variable 2 · · · variable i · · · variable n
1 · · · · · ·
2 · · · · · ·
...

...
...

...
...

...
...

m · · · · · ·

1 library(carData)

2 D <- Arrests

3 tail(D)

4 #or alterantive:

5 library(data.table)

6 print(data.table(D))

Figure: Data on police arrests in Toronto for possession of marijuana.

Data summarization

A statistic is a numerical quantity, such as a proportion, that is computed from

a sample x1, . . . , xm.

1 library(dplyr)
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2 D1 <- D %>% group_by(sex) %>% summarize(Count_Arrests = n(),

Proportion = Count_Arrests/nrow(D))

3 D1

Study a correlation between the two factor variables using the so called

contingency table:

1 D2 <- D %>% mutate(sex = ifelse(sex=="Female" ,1,0), employed

= ifelse(employed == "Yes" ,1,0)) %>%

2 select(sex , employed ,age , year)

3 round(cor(D2), digits = 3)

Given a data vector of numbers x = (x1, . . . , xn), we have:

• Sample mean:

x =
1

n

n∑
i=1

xi.

1 D <- Arrests

2 mean(D$age)

3 > 23.84654

4 #or alternative:
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5 sum(D$age)/nrow(D)

6 > 23.84654

Describing quantitative data

• Range of data:

range = max
1≤i≤n

xi − min
1≤i≤n

xi.

• The order statistics.

First, sort the data to obtain x(1) ≤ x(2) ≤ . . . ≤ x(n), and observe the

following.

1. The minimum: x(1).

2. The maximum: x(n).

3. The median x̃ = “middle” of data.

(order the data: x1 ≤ x2 ≤ · · · ≤ xn):


x(n+1

2 ) if n is odd,

1
2

(
x(n2 ) + x(n+1

2 )

)
if n is even.

1 D <- Arrests

2 R <- max(D$age) - min(D$age)

3 > 54

4 Min_age <- min(D$age)

5 > 12

6 Max_age <- max(D$age)

7 > 66

8 Med_age <- median(D$age)

9 > 21
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• Sample Variance (data - spread):

s2 =
1

n− 1

n∑
i=1

(xi − x)
2
,

where x is the sample mean.

Sample Standard Deviation = s =
√
s2

• Sample Correlation Coefficient:

rxy =

∑n
i=1 (xi − x) (yi − y)√∑n

i=1 (xi − x)
2 ∑n

i=1 (yi − y)
2

1 D <- Arrests

2 # Sample Variance

3 Sample_Var <- var(D$age)

4 > 69.15807

5 #or alterantively

6 mean_age <- mean(D$age)

7 D3 <- D %>% mutate(Diff = age -mean_age , Diff_squ = Diff*Diff

)

8 Sample_Var <- sum(D3$Diff_squ)/(nrow(D3) -1)

9 > 69.15807

10 # Sample Standard Deviation

11 sd(Sampel_Var)

12 > 8.316133

13 # or alternatively:

14 Sample_STD <- sqrt(Sample_Var)

15 > 8.316133
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1 D <- Arrests

2 D4 <- D %>% mutate(sex = ifelse(sex=="Female" ,1,0))

3 # Sample Correlation Coefficient

4 Sample_cor <- cor(D4$age , D4$sex)

5 > -0.01148502

6 #or alterantively

7 mean_age <- mean(D4$age)

8 mean_sex <- mean(D4$sex)

9 D5 <- D4 %>% mutate( Num = (age -mean_age)*(sex -mean_sex),

Denom1 = (age -mean_age)**2, Denom2 = (sex -mean_sex)**2)

10

11 Sample_cor <- sum(D5$Num)/sqrt(sum(D5$Denom1)*sum(D5$Denom2)

)

12 > -0.01148502

• p-quantile (0 < p < 1)

= z such that F (z) = P (X ≤ z) = p

Common values: 0.25, 0.5, 0.75 quantiles (=25, 50, and 75 percentiles

/first, second, and third quartiles)
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1 D <- Arrests

2 quantile(D$age)

> 0% 25% 50% 75% 100%

12 18 21 27 66

1 quantile(D$age , seq(0,1,by=.2))

> 0% 20% 40% 60% 80% 100%

12 17 20 23 30 66

The quantile of a probability distribution

Let f be a prob. density function for a R.V. X.

• Given α ∈ [0, 1], what is x such that P (X ≤ x) = α?

• By definition:

P (X ≤ x) = F (x) =

∫ x

−∞
f(u)du = α.

Example: X ∼ Exp(1) and α = 0.3, find x.

0.3 =

∫ x

0

λe−λx̂ dx̂ =

∫ x

0

e−x̂ dx̂ = −e−x − (−e−0) = 1− e−x

Therefore

0.7 = e−x ⇒ x = − log(0.7)
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Data Analysis

• 1st step: Data-Table (+ (statistic) summary of data)

• 2nd step: Visualisation with the aim of:

1. Identifying the most common values (for each variable)

2. Determining the amount of variability (for each variable)

3. Recognising unusual observations.

4. Exploring trends in the data.

Visualization of Discrete Data: Bar chart

Visualization for factor variables

(Nominal factor):

1 barplot(table(D$sex), main=’Arrests ’, ylim=c(0 ,6000), axis.

lty=1, col=c("Pink", "Maroon"))
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Barplot for Ordinal factor:

1 barplot(table(D$year), main=’Arrests ’, axis.lty=1, col= "

Maroon")

What will this code produce?

Visualization of Discrete Data: Pie chart

1 slices <- table(D$checks)

2 pie(slices , labels = rownames(slices), main = "Pie Chart of

Previous Arrests")
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Visualization of ”Continuous” Data: Histogram

Continuous analogue of bar plot

Idea:

• Divide the range of a continuous variable into interval-bins

• Plot the associated frequencies for each bin.

1 D_c <- Duncan # data set in carData - library

2 #left image:

3 hist(D_c$income , breaks = seq (0 ,100 ,20), col="DarkSalmon",

main = "Histogram of Income", xlab = "Income", ylab = "

count")

How do you have to change the R-code to get the image on the right?

1 #right image:

2 hist(D_c$income , breaks = seq (0 ,100 ,10), col="DarkSalmon",

main = "Histogram of Income", xlab = "Income", ylab = "

count")
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Empirical Cumulative Distribution Function (ECDF):

F̂ (x) =
1

m

m∑
i=1

1{xi≤x},

where 1{·} is the indicator function.

1 D_c <- Duncan

2 #left image:

3 plot.ecdf(D_c$income , xlab = ’income ’)

4 #right image:

5 install.packages("DescTools")

6 library(DescTools)

7 PlotECDF(D_c$income , seq (0 ,100 ,10), xlab = ’income ’)
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Box Plot

• describes centre of the data,

• describes spread of the data,

• describes departure from symmetry,

• describes identification of outliers of the data

1 D <- Arrests

2 boxplot(D$age , ylab = "age")
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Scatter Plot - Visualization of relations between variables

Idea:

Plot the observations in the x and y diagram

−→ Relation between x and y becomes apparent

Figure 1: Scatter plot of two variables x and y.

1 D_c <- Duncan

2 plot(D_c$income , D_c$prestige , pch=16,xlab=’income ’, ylab =

’prestige ’)
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Mixing variable types

To get the relation between two variables (“conditioned”) one the value of one

variable, we can use boxplots.

Figure 2: Box plot by category.

1 D <- Arrests

2 boxplot(age~checks , data = D, xlab=’checks ’, ylab=’age’)
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1 install.packages("ggplot2")

2 library(ggplot2)

3 ggplot(D, aes(x=checks , y=age , color=factor(checks))) + geom

_boxplot ()

QQ plots

Plots the quantiles of the first data set against the quantiles of the second data

set.

Idea:

• Calculate quantiles of the dataset for x.

• Calculate quantiles of the dataset for y.

• Plot quantiles of x against quantiles of y.
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=⇒ If the line is on the 45-degree reference line, the two sets come from a

population with the same distribution.

1 D_c <- Duncan

2 qqplot(D_c$income , D_c$prestige , xlab=’income ’, ylab=’

prestige ’, pch =16)

3 abline(0,1,col=’red’)

We see that income and prestige do not seem to come from the same distri-

bution for all values, but for an income that is below 50, they do seem to come
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from the same distribution.

Often QQ-Plots are used to compare sample data to the Normal

Distribution.

Stat2201 height distribution:

1 library(xlsx)

2 D_Stat2201 <- read.xlsx("Height_Weight_STAT2201.xlsx", 1)

3 qqnorm(D_Stat2201$Height)

4 abline (173,10,col=’red’)

We see in the Normal QQ-plot, that the Height seems to be normal dis-
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tributed, as the QQ plot is reveals a linear relation of the quantiles.

1 qqplot(D_Stat2201$Height , D_Stat2201$Weight , pch =16)

2 abline (-195,1.5,col=’red’)

However, the Height and the Weight do not seem to come from the same

distribution. For a height that is below 180cm, they do seem to come from the

same distribution.

The histogram reveals the structure and is an indicator why for large heights,

the height and weight do not seem to come from the same distribution. While
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the Height is still following a normal distribution for large values, the Weight

seems to be nearly uniform distribution for large values.

Your First Data Analysis

1 library(carData)

2 D_Q <- Depredations #Wolf depredation in 1973

3 head(Depredations)

longitude latitude number early late

1 -94.5 46.1 1 0 1

2 -93.0 46.6 2 0 2

3 -94.6 48.5 1 1 0

4 -92.9 46.6 2 0 2

5 -95.9 48.8 1 0 1

6 -92.7 47.1 1 0 1

a) What would be the very first step if someone gives you a dataset?

b) How do you determine the number of observations?

c) Which of the variables are continuous which ones are factors?

d) If you want to investigate the distribution of the latitude with respect to

number of depredations, what type of plot (and what R-Code) would you

use?

e) What variables do you suspect to be related and how would you test this?

f) Can you think of some other questions you would like to answer with that

data set?

See Answers in World document created by RMarkdown.
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Review Chapter 6: Data Description

• Summary Statistics

a) Sample-Mean,

b) Sample-Variance,

c) Sample-Covariance & Sample-Correlation,

d) Range of Data, Minimum, Maximum,

e) Median,

f) P-quantiles.

• Visualization:

a) Bar-Plot (factor variable),

b) Pie-Plot (factor variable),

c) Histogram (continuous variable),

d) ECDF-Plot,

e) Box-Plot,

f) Scatter-Plot (relation of two variables),

g) QQ-Plot.

Chapter 7–9

• Statistical Inference

• Central Limit Theorem

• Confidence Intervals

• Hypothesis Testing
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Statistical inference

Statistical Inference is the process of forming judgements about the parameters.

Assumptions:

• Assume that data X1, . . . , Xn is drawn randomly from some unknown

distribution (identically distributed).

• Assume that the data is independent

−→ Xi are i.i.d. (independent and identically distributed), i.e.,

1. Xi ∼ G for all 1 ≤ i ≤ n

2. Xis are independent

A statistic

A statistic is any function of the observations in a random sample.

−→ A statistic is itself a R.V.

Examples:

• g(X1, X2, . . . , Xn) = X = X1+X2+···+Xn
n = Sample mean

• g(X1, X2, . . . , Xn) = max{X1, X2, . . . , Xn}

• Sample variance and sample standard deviation

• Sample quantiles besides the median, (quartiles and percentiles)

Some notations:

• The probability distribution of a statistic is called the sampling distri-

bution.
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• A point estimate of some population parameter θ is a single numerical

value θ̂ of a statistic Θ̂.

• The statistic Θ̂ is called the point estimator.

Example:

Sample Mean = X = estimator of the population mean, µ.

Normal Distribution - Recap

X ∼ N(µ, σ2) then pdf is

f(x) =
1

σ
√

2π
e−

1
2 ( x−µσ )

2

, x ∈ R.

• E[X] = µ and Var(X) = σ2

• If µ = 0 and σ = 1 then

f(x) =
1√
2π

e−
1
2x

2

, x ∈ R,

= standard normal distribution

• X−µ
σ ∼ N(0, 1) = standardization

• X = µ+ σZ, Z ∼ N(0, 1)

Central Limit Theorem (for sample means)

If X1, X2, . . . , Xn is a random sample of size n taken from a population with

mean µ and finite variance σ2,then

lim
n→∞

X̄ − µ
σ√
n

= Z ∼ N(0, 1)

where X̄ is the sample mean. Equivalently,
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P

(
X̄ − µ

σ√
n

≤ x

)
= Φ(x)

Regardless of Xi’s distribution, the sum behaves (approximately) as the

Gaussian random variable!

X̄
n→∞
≈ N

(
µ,
σ2

n

)

Sn =
∑n
i=1Xn is then distribution

Sn
n→∞
≈ N(nµ, nσ2)

Example:

Xi ∼ Exp(0.5) (i.i.d.) → Sk =
∑k
i=1Xi

1 M <- matrix (0 ,50 ,1000)

2 M[1,] <- rexp (1000 , lambda)

3 for (i in 2:50){

4 M[i,] <- M[i-1,] + rexp (1000 , 0.5)

5 }

1 hist(M[3,], main = ’pdf of S3’, xlab=’’, ylab = ’’)

2 hist(M[40,], main = ’pdf of S40’, xlab=’’, ylab = ’’)
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We see that as we increase the number of X considered, the random variable

Sk =
∑k
i=1Xi (=the sum of the X) behaves like a normal distribution, although
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each X is in fact an exponential distribution.

Note that the Central Limit Theorem also tells us something about the

standard error of the sample mean X̄:

• The standard error of X is given by σ√
n

.

• In most practical situations σ is not known but rather estimated.

• The estimated standard error (SE) is:

s√
n

=
1√
n

√∑n
i=1 (xi − x)

2

n− 1
=

√∑n
i=1 x

2
i − nx2

n(n− 1)

Example:

For a temperature of 100◦F and 550 watts, the following measurements of

thermal conductivity were obtained:

41.60 41.48 42.34 41.95 41.86

42.18 41.72 42.26 41.81 42.04

→ sample mean is 41.924

→ estimated standard error is sample standard deviation s divided by
√

10,

here 0.284√
10

= 0.0898

Confidence Interval

confidence interval for µ (the real mean):

l ≤ µ ≤ u,
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• Let X1, . . . , Xn be collected data

• Endpoints are values of random variables L = g1(X1, . . . , Xn) and U =

g2(X1, . . . , Xn) such that

P (L(X) ≤ µ ≤ U(X)) = 1− α, α ∈ (0, 1).

−→ 1− α is called the confidence level.

((l, u) is the 100 · (1− α) % confidence interval.)

Confidence Interval for Mean

Let Xi be i.i.d., then:

• Recall

X ∼ N

(
µ,
σ2

n

)
.

• That is, for some positive scalar value z1−α/2, we have

P

(
X ≤ µ+ z1−α/2

σ√
n

)
= P

(
X − µ

σ√
n

≤ z1−α/2

)
= Φ(z1−α/2)

P

(
X ≤ µ− z1−α/2

σ√
n

)
= P

(
X − µ

σ√
n

≤ −z1−α/2

)
= Φ(−z1−α/2) = 1−Φ(z1−α/2)
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