

Analysis of Engineering and Scientific Data

Semester 1 - 2019

Sabrina Streipert

s.streipert@uq.edu.au

Lecture 1

- 1. Course Information
- 2. Probability versus Statistics
- 3. Deterministic versus Stochastic Model
- 4. Statistical Inference
- 5. Introduction to R-Studio

Useful information

- Information about the course, its learning objectives, etc is available on the *Electronic Course Profile*.
- The course has a blackboard page.
- The course also has a webpage.
- Syllabus on blackboard and the course webpage: https://courses.smp.uq.edu.au/STAT2201/2019a/

Supportive literature for this course:

Applied Statistics and Probability for Engineers

by Douglas C. Montgomery and George C. Runger (6th edition)

Grading

• 2 hour final exam

Need 40% to pass the course. The mark on your final exam makes 60% of the total course grade.

• 6 homework assignments

Your best 5 homework assignments will be counting towareds your total course grade.

This grade will make 40% of the total course grade.

• 6 tutorial sessions to help with the homework assignments.

Homework Assignments

Homework as **R** Markdown document.

Week	Dates	Lecture	Tutorial	Assignment Due
1	25/2-01/3	\checkmark	х	х
2	04/3-08/3	\checkmark	\checkmark	х
3	11/3 - 15/3	\checkmark	х	\checkmark
4	18/3-22/3	\checkmark	\checkmark	х
5	25/3-29/3	\checkmark	x	\checkmark
6	01/4-05/4	\checkmark	\checkmark	х
7	08/4-12/4	\checkmark	\checkmark	\checkmark
8	15/4 - 18/4	\checkmark	х	х
9	22/4 - 26/4	х	х	х
10	29/4-03/5	\checkmark	\checkmark	\checkmark
11	07/5 - 10/4	\checkmark	х	\checkmark
12	13/5 - 17/5	\checkmark	\checkmark	х
13	20/5 - 24/5	х	x	\checkmark
14	27/5 - 31/5	х	х	х

Consultation Hours

Consultation Hour:

- Friday: 2-3pm 82 E (Seddon Building) 409
- By appointment: s.streipert@uq.edu.au

Tutors will not provide consultation hours.

Lecture Notes

- The morning of each class, the preliminary version of the lecture slides is available in a workbook format on blackboard.
- Lecture Notes will be uploaded on *blackboard* in the section of *Learning Resources* as well as on the course webpage by 12pm the day after lecture.
- Lecture notes follow the supportive literature:

Applied Statistics and Probability for Engineers – Montgomery and Runger

Programming Language

In this course, we will be using the statistics software \mathbf{R} . (created by Ross Ihaka and Robert Gentleman at the University of Auckland, NZ in 1992)

Benefits of R:

- R is a programming language and free software environment.
- R is widely used among statisticians and data miners.
- R has a large support community online.
- R is an implementation of the S programming language.

Other languages: S, Matlab, Python, Julia.

Probability vs. Statistics

Probability deals with predicting the likelihood of future events. *Q:* What is the likelihood of a rainy day tomorrow ?

Statistics involves the analysis of the frequency of past events and with it, collecting data.

Q: How long do patients have to wait in the emergency room? - important questions because some patients leave without treatment...

Statistics can be used for creating probabilistic models.

Data Science is an emerging field, combining statistics, big-data, machine learning and computational techniques.

Engineering Method

Deterministic Models

To explain processes, we can use **deterministic** model.

The output of a **deterministic** model is fully determined by the parameter values and the initial conditions.

For example:

$$I = \frac{V}{R} \qquad I(t_0) = I_0,$$

where

- *I* is the current,
- V is the voltage,
- *R* is the resistance.

What are external factors that could impact this result? Will you always get the same results if V and R are the same?

Stochastic Models

Given a deterministic model, there are many different ways to add stochasticity:

For example:

• The measurement observation for *I* could be wrong:

$$I_{obs} = I_{true} + \epsilon = \frac{V}{R} + \epsilon$$

• The measurement of the voltage could contain an error:

$$I = \frac{V_{obs}}{R} = \frac{V_{true} + \epsilon}{R}$$

• Similarly for the resistance R:

$$I = \frac{V}{R_{obs}} = \frac{V}{R_{true} + \epsilon}$$

• And others, such as combinations of the above.

Statistical Inference

In the previous example, we reasoned from general laws to specific <u>cases</u>.

But what if there is no general law at hand?

We can also, given a set of measurements, reason from a sample to a population (i.e. to a more general case).

\longrightarrow statistical inference

Data Collection for statistical inference

- retrospective study
- observational study
- designed experiment

Important in this case is the understanding of:

- samples
- impact factors
- limitations
- assumptions

Models by statistical inference

Given:

Measurements (output): y ($\vec{y} = (y_1, \dots, y_N)$) Impact factors (explanatory variables): x_1, x_2, \dots, x_k ($x_i = \vec{x}_i$).

Aim: Find f such that

 $y \approx f(x_1, \ldots, x_k)$

(Regression Models)

Probability is then used to analyse the statistical inference.

Chapter 2

- 1. Sample Space, Outcomes and Events
- 2. Probability
- 3. Conditional Probability and Independence
- 4. Birthday Problem (Monte Carlo)

Random Experiment

= experiment that yields different results each time

Examples:

- Tossing a coin
- Selecting a ball from an urn containing coloured balls
- Amount of rain in Queensland
- Measuring the current on a physics experiment
- Asking for someone's birthday

Sample Space

Random experiment \longrightarrow different results \longrightarrow define sample space

Sample Space = Ω = set of all possible (non-decomposible) outcomes.

 $\underline{ \text{non-decomposible}}_{\text{outcomes}} \text{ outcomes means that it can not be a combination of other}$

Example: Having the birthday at the 25th of March 1998 versus having the birthday in March 1998.

Note: Only one outcome can occur.

Sample Space - Examples

- Tossing a coin
- The amount of water in the Fitzroy river?
- The amount of students that share the same birthday in this class?
- The number of professors in Mechanical Engineering at UQ
- The salary you might earn as an engineer?

Sample Space - Types

 \rightarrow revisit examples on previous slide and determine the type of sample space.

Subset of Sample Space (Event)

Any subset of the sample space = **Event**

Events are usually denoted by upper-case letters A, B, C, \ldots

Event A occurs if the outcome of the experiment is one of the elements in A.

Example:

- Having a repeated number in a 6-digit phone code.
- Having all students here have their birthday in March.
- Having a new-born weight more than 4kg.
- Having the same outcome when tossing a coin three times.

Events

Say you wonder about the months in which all Stat 2201 students have their birthday in.

What is the sample space?

 $\Omega = \{Jan, Feb, \dots, Dec\}.$

What could be a possible event here?

 $A = \{June, July, August\}$

What do you think is the "smallest" event?

Having a student not having birthday in any of the month January to December. Null Event $A = \emptyset$

What do you think is the "biggest" event?

The event that all students have their birthday in any of the months, that is $A = \{1, 2, 3..., 12\} = \Omega$ (certain event).

Set Operations

Events A, B, C, \ldots are (sub-)sets of the sample space Ω

a) $A \cup B$ "Union of A and B"

b) $A \cap B$ "Intersection of A and B"

c)
$$\overline{A} = A^c = \Omega \setminus A$$
 "Complement of A" = Everything except A.

d) $A \subset B$ "A is a subset of B"

Example:

 $\Omega = \{Jan, Feb, \dots, Dec\}, A = \{June, July, Aug\}, B = \{Aug, Oct, Dec\}.$ Then

- a) $A \cup B = \{June, July, Aug, Oct, Dec\}$
- b) $A \cap B = \{Aug\}$
- c) $A^{c} = \overline{A} = \{Jan, Feb, March, May, Sept, Oct, Nov, Dec\}$
- d) For example $C = \{July, Aug\} \subset A = \{June, July, Aug\}$

Remarks to Sets

If $A \cap B = \emptyset$, we say that event A and event B are "**mutually exclusive**" or "**disjoint**".

If $A \subset B$ and $C \subset B$ does this imply that $A \cap C \neq \emptyset$?

No, not necessarily, for example $B = \{1, 2, 3, 4, 5\}$ and $A = \{1, 2\}$ and $C = \{4\}$.

 $A \cap \overline{A} = \emptyset.$

Example:

Consider a digital scale that provides weights to the nearest gram. What is the sample space?

$$\Omega = \mathbb{N}_0 = \{0, 1, 2, 3, 4, \ldots\}$$

Let A be the event that a weight exceeds 10 grams $\rightarrow A = \{11, 12, 13, \ldots\}$.

Let B be the event that a weight is greater than or equal to 7 grams $\rightarrow B = \{7, 8, 9, \ldots\}.$

Let C be the event that a weight is less than or equal to 16 grams $\rightarrow C = \{0, 1, 2, 3, \dots, 16\}.$

Find
$$A \cup B$$
 $A \cup B = \{7, 8, 9, \ldots\}$.

Find
$$A \cup (B \cap C)$$

 $A \cup (B \cap C) = \{11, 12, \ldots\} \cup \{7, 8, 9, \ldots, 15, 16\} = \{7, 8, 9, \ldots\}$
Find $\overline{(A \cup B)} \cap C$
 $\overline{(A \cup B)} \cap C = \overline{\{7, 8, 9, \ldots\}} \cap \{0, 1, 2, \ldots, 15, 16\} = \{0, 1, 2, 3, 4, 5, 6\} \cap \{0, 1, 2, \ldots, 15, 16\} = \{0, 1, 2, 3, 4, 5, 6\}$