

THE UNIVERSITY OF QUEENSLAND

AUSTRALIA

Analysis of Engineering and Scientific Data

Semester 1 - 2019

Sabrina Streipert

s.streipert@uq.edu.au

Descriptive Statistics

Visualisation of the data.

Analysis and presentation of characteristics of the data.

Possible data types:

 Continuous quantitative data → values in continuous range (height, width, length, temperature, humidity, volume, area, and price)

Possible data types:

- Continuous quantitative data → values in continuous range (height, width, length, temperature, humidity, volume, area, and price)
- Discrete qualitative data (factor / categorical variable) → values in discrete range (number of family members, gender (male or female), count of objects).

Possible data types:

- Continuous quantitative data → values in continuous range (height, width, length, temperature, humidity, volume, area, and price)
- Discrete qualitative data (factor / categorical variable) → values in discrete range (number of family members, gender (male or female), count of objects).

Discrete Sub-types:

Possible data types:

- Continuous quantitative data → values in continuous range (height, width, length, temperature, humidity, volume, area, and price)
- Discrete qualitative data (factor / categorical variable) → values in discrete range (number of family members, gender (male or female), count of objects).

Discrete Sub-types:

 Nominal factors = variables without order, such as males and females.

Possible data types:

- Continuous quantitative data → values in continuous range (height, width, length, temperature, humidity, volume, area, and price)
- Discrete qualitative data (factor / categorical variable) → values in discrete range (number of family members, gender (male or female), count of objects).

Discrete Sub-types:

- Nominal factors = variables without order, such as males and females.
- Ordinal factors = variable with a certain order, such as age group.

Each configuration will consist of continuous and discrete (ordinal and nominal) variables.

- Each configuration will consist of continuous and discrete (ordinal and nominal) variables.
- Major configuration types:

- Each configuration will consist of continuous and discrete (ordinal and nominal) variables.
- Major configuration types:
 - A single sample configuration consists of *m* scalars:
 D = {x₁, x₂,..., x_m}.
 Nr of fisherman per day; m = 365 and x_i = 0, 1,

- Each configuration will consist of continuous and discrete (ordinal and nominal) variables.
- Major configuration types:
 - A single sample configuration consists of *m* scalars:
 D = {x₁, x₂,..., x_m}.
 Nr of fisherman per day; m = 365 and x_i = 0, 1,
 - Two (or more) sets of samples:

 $\mathcal{D} = \left\{ \; \left\{ x_1^1, \dots, x_{m_1}^1 \right\}, \; \left\{ x_1^2, \dots, x_{m_2}^2 \right\}, \dots, \left\{ x_1^k, \dots, x_{m_k}^k \right\} \; \right\}.$

Nr of fisherman per day in k different regions.

- Each configuration will consist of continuous and discrete (ordinal and nominal) variables.
- Major configuration types:
 - A single sample configuration consists of *m* scalars:
 \$\mathcal{D} = {x_1, x_2, \ldots, x_m}\$.
 Nr of fisherman per day; *m* = 365 and x_i = 0, 1, \ldots.
 - Two (or more) sets of samples:

 $\mathcal{D} = \left\{ \ \left\{ x_1^1, \dots, x_{m_1}^1 \right\}, \ \left\{ x_1^2, \dots, x_{m_2}^2 \right\}, \dots, \left\{ x_1^k, \dots, x_{m_k}^k \right\} \ \right\}.$

Nr of fisherman per day in k different regions.

Data tuples: D = {(x_{1,1}, x_{1,2}), (x_{2,1}, x_{2,2}), ..., (x_{m,1}, x_{m,2})}. x_{i,1} = Nr of fisherman at *i*th day, x_{i,2} is the number of fishing nets used at day *i*.

- Each configuration will consist of continuous and discrete (ordinal and nominal) variables.
- Major configuration types:
 - A single sample configuration consists of *m* scalars:
 \$\mathcal{D} = {x_1, x_2, \ldots, x_m}\$.
 Nr of fisherman per day; *m* = 365 and x_i = 0, 1, \ldots.
 - Two (or more) sets of samples:

 $\mathcal{D} = \left\{ \ \left\{ x_1^1, \dots, x_{m_1}^1 \right\}, \ \left\{ x_1^2, \dots, x_{m_2}^2 \right\}, \dots, \left\{ x_1^k, \dots, x_{m_k}^k \right\} \ \right\}.$

Nr of fisherman per day in k different regions.

- Data tuples: D = {(x_{1,1}, x_{1,2}), (x_{2,1}, x_{2,2}), ..., (x_{m,1}, x_{m,2})}. x_{i,1} = Nr of fisherman at *i*th day, x_{i,2} is the number of fishing nets used at day *i*.
- Generalization of tuples to vectors:

$$\mathcal{D} = \{(x_{1,1}, \ldots, x_{1,n}), \ldots, (x_{m,1}, \ldots, x_{m,n})\}$$

 $x_{i,1} = Nr$ of fisherman at *i*th day, $x_{i,2}$ is the number of fishing nets used at day *i*, $x_{i,3} = Sea-Surface$ temperature at day *i*, ...

1. Data tables

The table **rows** represent observed measurements for *independent* variables (**columns**).

Observ.	variable 1	variable 2		variable i		variable <i>n</i>
1	•	•	•	•	•	•
2		•	•	•	•	•
:	:	:	:	÷	÷	÷
т	•	•	•	•		•

```
1 library(carData)
2 D <- Arrests
3 tail(D)
4
5 #or alterantive:
6 library(data.table)
7 print(data.table(D))</pre>
```

	released	colour	year	age	sex	employed	citizen	checks
5221	Yes	White	2002	22	Male	Yes	Yes	0
5222	Yes	White	2000	17	Male	Yes	Yes	0
5223	Yes	White	2000	21	Female	Yes	Yes	0
5224	Yes	Black	1999	21	Female	Yes	Yes	1
5225	No	Black	1998	24	Male	Yes	Yes	4
5226	Yes	White	1999	16	Male	Yes	Yes	3

Figure: Data on police arrests in Toronto for possession of marijuana.

Data summarization

A *statistic* is a numerical quantity, such as the proportion, that is computed from a sample x_1, \ldots, x_m .

```
1 library(dplyr)
2 D1 <- D %>% group_by(sex) %>% summarize(Count_
    Arrests = n(), Proportion = Count_Arrests/
    nrow(D))
3 D1
```

	sex	Count_Arrests	Proportion	
	<fct></fct>	<int></int>	<dbl></dbl>	
1	Female	443	0.0848	
2	Male	4783	0.915	