

AUSIKALIA

Analysis of Engineering and Scientific Data

Semester 1 – 2019

Changes in this week's tutorials

1. P02: Monday: 3-4pm: 47A-249

2. P06: Wednesday: 3-4pm: 69-305

3. P07: Thursday: 2-3pm: 47A-250

Homework Assignments

Homework as R Markdown document.

Week	Dates	Lecture	Tutorial	Assignment Due
1	25/2-01/3	√	Х	Х
2	04/3-08/3	\checkmark	\checkmark	x
3	11/3-15/3	\checkmark	X	✓
4	18/3-22/3	\checkmark	\checkmark	x
5	25/3-29/3	\checkmark	X	✓
6	01/4-05/4	\checkmark	\checkmark	x
7	08/4-12/4	\checkmark	\checkmark	✓
8	15/4–18/4	\checkmark	X	x
9	22/4-26/4	Х	Х	Х
10	29/4-03/5	√	✓	✓
11	07/5-10/4	\checkmark	X	✓
12	13/5–17/5	\checkmark	\checkmark	x
13	20/5-24/5	X	X	✓
14	27/5-31/5	X	X	X

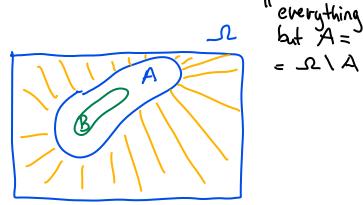
Lecture 2

- 1. Sample Space, Outcomes and Events
- 2. Probability
- 3. Conditional Probability and Independence
- 4. Birthday Problem (Monte Carlo Method)

Venn Diagram sample space

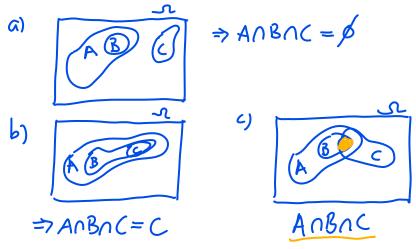
Venn Diagram

Given sample space Ω and a set $B \subset A$. Highlight A^c in a Venn diagram.



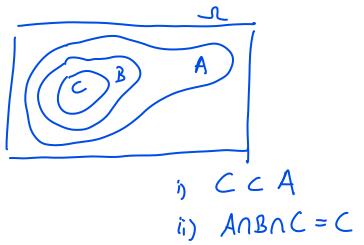
Venn Diagram

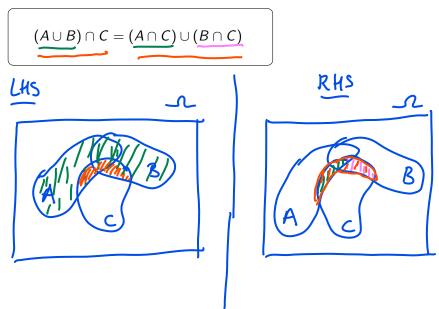
Given sample space Ω and a set $B \subset A$ and C. Highlight $A \cap B \cap C$ in a Venn diagram.

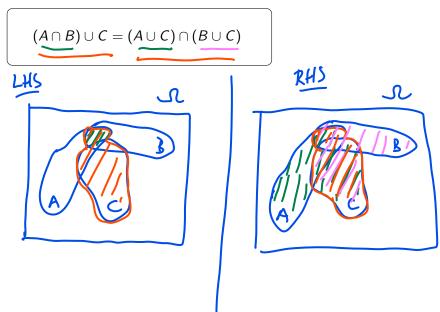


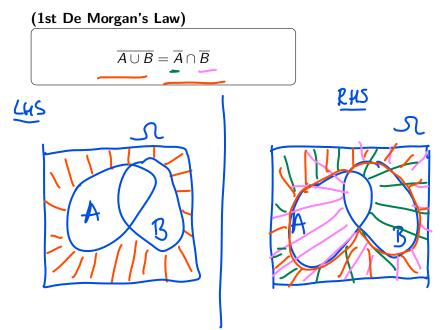
Venn Diagram

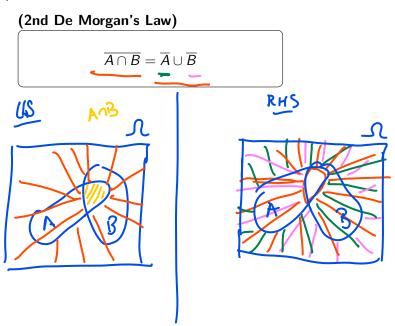
If $C \subset B$ and $B \subset A$, what can we say about the relation between C and A?



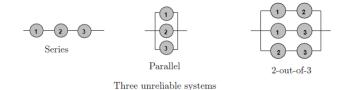








Example - Network



Left: Series system works only if all components work.

Center: Parallel system works if at least 1 component works.

Right: 2-out-of-3 system works if at least 2 components work.

Example - Network

Let A_i be the event that the i^{th} component works.

Express the event that "Series system" works using A_i .

$$A_1 \cap A_2 \cap A_3$$

Express the event that "Parallel system" works using A_i .

$$A_1 \cup A_2 \cup A_3$$

Express the event that "2-out-of-3 system" works using A_i .

$$\underline{(A_1 \cap A_2) \cup (A_1 \cap A_3) \cup (A_2 \cap A_3)}$$

Probability = Likelihood

Probability is a measure of how likely the outcome of an experiment is.

Probability = Likelihood

Probability is a measure of how likely the outcome of an experiment is.

Example:

Sample space Ω is the income of all aerospace engineers in Australia.

Let A be the event that the income of at least 90% of engineers is above 150K a year.

Probability = Likelihood

Probability is a measure of how likely the outcome of an experiment is.

Example:

Sample space Ω is the income of all aerospace engineers in Australia.

Let A be the event that the income of at least 90% of engineers is above 150K a year.

To measure the likelihood of this event A, we ask:

What is the probability/likelihood that at least 90% of engineers have an income of above 150K a year?

Definition

Let \mathcal{F} be the set of all subsets of Ω .

Definition

Let \mathcal{F} be the set of all subsets of Ω .

Definition

Let \mathcal{F} be the set of all subsets of Ω .

A probability $P:\mathcal{F} \rightarrow [0,1]$ such that the following holds:

1. $0 \le P(A) \le 1$ for any $A \in \mathcal{F}$

Definition

Let \mathcal{F} be the set of all subsets of Ω .

- 1. $0 \le P(A) \le 1$ for any $A \in \mathcal{F}$
- 2. $P(\Omega) = 1$

Definition

Let \mathcal{F} be the set of all subsets of Ω .

- 1. $0 \le P(A) \le 1$ for any $A \in \mathcal{F}$
- **2**. $P(\Omega) = 1$
- 3. If $A_1 \cap A_2 = \emptyset$ then $P(A_1 \cup A_2) = P(A_1) + P(A_2)$

Definition

Let \mathcal{F} be the set of all subsets of Ω .

- 1. $0 \le P(A) \le 1$ for any $A \in \mathcal{F}$
- 2. $P(\Omega) = 1$
- 3. If $A_1 \cap A_2 = \emptyset$ then $P(A_1 \cup A_2) = P(A_1) + P(A_2)$ Generalized:

If
$$A_i \cap A_j = \emptyset$$
 for all $i \neq j$, then

$$P(\cup_{i=1}^k A_i) = \sum_{i=1}^k P(A_i)$$

Probability - Properties

$$P(\emptyset) = \underline{0}$$

$$P(\overline{A}) = \underline{1 - P(A)}$$

▶ If
$$A \subset B$$
 then $P(A) \leq P(B)$

$$P(A \cup B) = \underline{P(A) + P(B) - P(A \cap B)}$$

$$\Omega = \{a_1, a_2, \ldots, a_n\},\,$$

$$\Omega = \{a_1, a_2, \dots, a_n\}$$
, Event $A = \{a_1, a_4, a_6\}$

$$\Omega = \{a_1, a_2, \ldots, a_n\}$$
 , Event $A = \{a_1, a_4, a_6\}$, then

$$P(A) = P(a_1) + P(a_4) + P(a_6)$$

$$\Omega = \{a_1, a_2, \ldots, a_n\}$$
, Event $A = \{a_1, a_4, a_6\}$, then

$$P(A) = P(a_1) + P(a_4) + P(a_6)$$

In general:

$$P(A) = \sum_{i:a_i \in A} P(a_i)$$

$$\Omega = \{a_1, a_2, \dots, a_n\}$$
, Event $A = \{a_1, a_4, a_6\}$, then

$$P(A) = P(a_1) + P(a_4) + P(a_6)$$

In general:

$$P(A) = \sum_{i: a_i \in A} P(a_i)$$

Example:

The probability that a machine produces at least 4 products an hour but less than 10 is $P(\text{machine produces 4 prod}) + P(\text{machine produces 5 prod}) + \dots$

 \dots + P(machine produces 9 prod).

Probability

How do we get the values for $P(a_i)$?

- e.g. samples from experiments/available data collection
- geometric probability

Probability

How do we get the values for $P(a_i)$?

- ▶ e.g. samples from experiments/available data collection
- geometric probability

If all events are equally likely and Ω is finite, then

$$P(A) = \frac{|A|}{|\Omega|}$$

If Ω discrete, then |A| = number of non-decomposible elements in set/event A.

If Ω continuous, then |A| = length of the (continuous) interval representing A.

Example - Phone Number

If each digit from 0 to 9 of a 9-digit phone number are equally likely, what is the probability that:

▶ the phone number contains nine times the number 9?

$$P = \frac{|A|}{|\Omega|} = \frac{1}{10^9}$$

▶ the phone number contains exactly one 2?

$$P = \frac{|B|}{|\Omega|} = \frac{998}{109}$$
 for positions of the Z

▶ the phone number contains at least two 5?

$$= \frac{P = 1 - P(\text{at most two 5}) = 1 - [P(\text{no 5}) + P(\text{one 5})]}{1 - \left[\frac{9^9}{10^9} + \frac{99^8}{10^9}\right]}$$
 for positions of the 5

Probability - Continuous Sample Space

geometric probability for continuous sample space

 $\Omega = [a,b]$ or any other uncountable set (e.g. any subset of \mathbb{R}) Event $A = (a_1,b_1) \subset [a,b]$ and any value in Ω is **equally likely**

Probability - Continuous Sample Space

geometric probability for continuous sample space

 $\Omega = [a,b]$ or any other uncountable set (e.g. any subset of \mathbb{R}) Event $A = (a_1,b_1) \subset [a,b]$ and any value in Ω is **equally likely**, then

$$P(A) = rac{|A|}{|\Omega|} = rac{b_1 - a_1}{b - a}$$

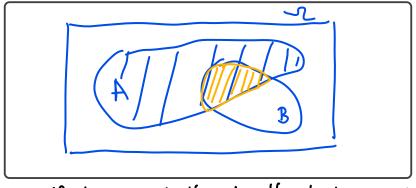
Example:

The probability that a randomly chosen number (not necessarily an integer) between 0 and 100 lies in (0,5) is

$$P(A) = \frac{5-0}{100-0} = \frac{1}{20}.$$

Conditional Probability

Suppose we know that event A occurred. How does that affect the probability that B will occur?



=> if A happened, then in the shaded area, so B can only happen in AMB.

Conditional Probability

So, the relative change/likelihood that B occurs is

$$P(B \text{ happens, given that A happened}) = \frac{P(A \cap B)}{P(A)}$$

= "Probability that B occurs, given that A occurred", denoted by

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

Conditional Probability

We therefore have

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

multiply both sides by P(A) to get (so-called "Chain Rule"):

Conditional Probability

We therefore have

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

multiply both sides by P(A) to get (so-called "Chain Rule"):

$$P(A \cap B) = P(B \mid A)P(A)$$

Example:

Suppose you take two math courses: *Calculus for Engineers* and *Statistics*.

The event A, that the mean grade is 6, is then:

$$A = \{ (Calc = 5, Stat = 7), (Calc = 6, Stat = 6), (Calc = 7, Stat = 5) \}.$$

Let B be the event that you had at least one 7.

Then $A \cap B = \{(Calc = 5, Stat = 7), (Calc = 7, Stat = 5)\}.$

Example:

Suppose you take two math courses: *Calculus for Engineers* and *Statistics*.

The event A, that the mean grade is 6, is then:

$$A = \{ (Calc = 5, Stat = 7), (Calc = 6, Stat = 6), (Calc = 7, Stat = 5) \}.$$

Let B be the event that you had at least one 7.

Then
$$A \cap B = \{(Calc = 5, Stat = 7), (Calc = 7, Stat = 5)\}.$$

Given that the mean grade is 6, what is the probability that one grade was a 7?

Considering all cases are equally likely.

$$P(B|A) = P(A \cap B)/P(A) = |A \cap B|/|A| = 2/3$$
 $|\Omega| = \frac{7^2}{2}$

Conditional Probability

Can we extend that result?

$$P(A \cap B \cap C) = \underline{P(C|A,B) \cdot P(B|A) \cdot P(A)}$$

Even more general:

$$P(\cap_{i=1}^{k} A_i) = P(A_k | A_1, \dots, A_{k-1}) \cdot P(A_{k-1} | A_{k-2}, \dots, A_1) \cdots \cdots P(A_2 | A_1) P(A_1)$$

We draw 3 balls from a bowl with 6 white and 4 black balls.

We draw 3 balls from a bowl with 6 white and 4 black balls. What is the probability that all balls will be black if you do return them after every drawing?

$$P = \left(\frac{4}{10}\right)^3$$

What is the probability that all balls will be black, if the draws are not returned?

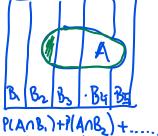
$$P = \frac{4}{10} \cdot \frac{3}{9} \cdot \frac{2}{8}$$

Law of Total Probability

Let B_1, B_2, \ldots, B_n be a **partition** of Ω , that is $B_i \cap B_i = \emptyset$ for all $i \neq j$ and $\bigcup_{i=1}^n B_i = \Omega$

Then
$$P(A) = \sum_{i=1}^{n} P(A \cap B_i)$$

and using conditional probabilities, we have



$$P(A) = \sum_{i=1}^{n} P(A \cap B_i) = \sum_{i=1}^{n} P(A|B_i)P(B_i)$$

Law of Total Probability - Example

Semiconductor Failures:

P of Failure	Level of Contamination
0.10	High
0.05	Medium
0.01	Low

In a day, 15% of the chips are subjected to high levels of contamination, 25% to medium levels of contamination, and 60% to low levels of contamination.

F= "failure", H= "High contamination", M= "Medium contamination", L= "Low contamination". (So partition is the levels of contamination.)

$$P(F) = P(F|H)P(H) + P(F|M)P(M) + P(F|L)P(L)$$

= 0.10 \cdot 0.15 + 0.05 \cdot 0.25 + 0.01 \cdot 0.60.

$$P(A \cap B) = P(A)P(B)$$

- $P(A \cap B) = \underline{P(A)P(B)}$
- $P(A|B) = \underline{P(A)}$

- $P(A \cap B) = P(A)P(B)$
- $P(A|B) = \underline{P(A)}$
- $P(B|A) = \underline{P(B)}$

Two events A and B are **independent** if any of the following holds:

$$P(A \cap B) = P(A)P(B)$$

$$ightharpoonup P(A|B) = P(A)$$

$$ightharpoonup P(B|A) = P(B)$$

This can be extended:

Events A_1, A_2, \ldots, A_k are independent if

$$P(A_1 \cap A_2 \cap ... \cap A_k) = P(A_1)P(A_2)...P(A_k) = \prod_{i=1}^{n} P(A_i)$$