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Review of Chapter 2

I Sample space: Ω.

I Events: A,B,C . . . (subsets of Ω).

I Venn Diagram.

I Operation Laws and DeMorgan Laws.

a) (A ∪ B) ∩ C = (A ∩ C ) ∪ (B ∩ C )

b) (A ∩ B) ∪ C = (A ∪ C ) ∩ (B ∪ C )

c) A ∪ B = A ∩ B

d) A ∩ B = A ∪ B
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Review of Chapter 2

I Probability: “measure” of likelihood of an event.

I Formal Definition:

Definition
A probability P : F → [0, 1], is a rule (or function) which assigns a
number between 0 and 1 to each event, and which satisfies the
following axioms:

I 0 ≤ P(A) ≤ 1,
I P(Ω) = 1,

I if {Ai} are disjoint, then P

(⋃
i

Ai

)
=
∑
i

P(Ai ).
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Review of Chapter 2

I A measure can be defined on both discrete and continuous
state spaces.

I geometric probability for equally likely events:
a) In the discrete case it will (generally) result in solving a

counting problem:

b) In the continuous case it will (generally) result in a solution of
finding an area (an integration) problem:
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Review of Chapter 2

I Conditional probability:

P(A | B) =
P(A ∩ B)

P(B)
,

I Chain rule:

P(A ∩ B) = P(A | B)P(B),

I Law of Total Probability: {Bi} are a partition of Ω, then

P(A) =
n∑

i=1

P(A ∩ Bi ) =
n∑

i=1

P(A | Bi ) P(Bi ),
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Review of Chapter 2

I Independence:

A,B independent iff P(A | B) = P(A).

↔ P(B | A) = P(B).

↔ P(A ∩ B) = P(A)P(B).



Example - independence

I Getting a 7 on the assignments (event A) if one visits the
tutorials (event B)? dependent

I Being enrolled in either Calculus (event A) or Statistics (event
B) in one semester. dependent

I Drawing a red ball as second ball (event A) if the first ball
was blue (event B), if the balls are not returned to the bucket
of coloured balls. dependent

I Getting a 2 (event A) or a 4 (event B) when rolling a dice.
dependent

I Drawing a red ball as second ball (event A) if the first ball
was blue (event B), if the balls are returned to the bucket of
coloured balls. independent



Independence vs. Mutually Exclusive

If A,B are mutually exclusive −→ A,B are independent?
NO!
For example: Rolling a dice once.
A = event to get a ’2’, B = event to get a ’4’.
A,B are mutually exclusive but dependent since
P(A|B) = 0 [if you got a ’4’ you can not get a ’2’], but P(A) = 1

6 ,
so

P(A|B) 6= P(A) −→ A,B are dependent

If A,B are mutually exclusive ←− A,B are independent?
NO!
For example: Card game with 52 cards.
A = event to get a spade, B = event to get a ace.
A,B are independent since

1

52
= P(A ∩ B) =

4

52

1

4
= P(B)P(A)

but they are not mutually exclusive because there is a card ace in
spade.



The Birthday problem

What is the probability that among N students at least 2 students
share the same birthday?

P(22 students share BD) = 1− P(no students share their BD) =
1− 365

365 ·
364
365 ·

363
365 · · · ·

365−N+1
365 = 1− 365!

(365−N)! ·
1

365N

Recall: 365! = 365 · 354 · 363 · · · 2 · 1

Optional: See RMarkdown document in Lecture 2 folder
(blackboard and course webpage) to see this example coded
example in R.



Chapter 3

1. Random Variables

2. Probability Mass/Density Function

3. Cumulative Distribution Function

4. Expectation and Variance

5. Special Discrete Distributions (Bernoulli, Binomial,Geometric)

6. Special Continuous Distributions (Uniform, Exponential,
Normal)



Random Variables

Definition
A function X (ω) assigning to every outcome ω in the sample space
Ω a real number is called a random variable.

Example:

I Tossing a coin: Ω = {H,T}; X could be X (H) = 1 (e.g.
”Head is success”) and X (T ) = 0 (e.g. ”Tail is failure”).

I N transistors, ai = event that i th transistor works; X could
assign a 1 if the transistor works, else 0, i.e.,
X (ai ) = 1, X (ai ) = 0.

I N transistors, ai = event that i th transistor works. Take 2
transistors, then the possible outcomes are
Ω = {(a1, a2), (a1, a2), (a1, a2), (a1, a2)}. X could be the
number of defective transistors, i.e.,

X ((a1, a2)) = 0, X ((a1, a2)) = 1 = X ((a1, a2)), X (a1, a2) = 2.
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Some notational abbreviations

I Random variables denoted by X ,Y ,Z . . ..

I Outcomes of X are denoted by x1, x2, x3, . . ..

I X = X (ω).

I {X ≤ x} = {ω ∈ Ω ; X (ω) ≤ x}.

I {X = x} = {ω ∈ Ω ; X (ω) = x}.

I P({ω ∈ Ω ; X (ω) ≤ x}) = P(X ≤ x).

I P({ω ∈ Ω ; X (ω) = x}) = P(X = x).
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Example:
We flip a die 15 times, such that the outcome “2” is associated
with a success (=1), else failure (=0).

Ω = {0, 1}15

Suppose X counts the successes:

X (ω) = ω1 + ω2 + · · ·+ ω15.

{X = k} is the set of outcomes with exactly k successes.

What is P(X = k)?

P(X = k) =

(
15

k

)(
1

6

)k (5

6

)15−k
,



Example:
We flip a die 15 times, such that the outcome “2” is associated
with a success (=1), else failure (=0).

Ω = {0, 1}15

Suppose X counts the successes:

X (ω) = ω1 + ω2 + · · ·+ ω15.

{X = k} is the set of outcomes with exactly k successes.

What is P(X = k)?

P(X = k) =

(
15

k

)(
1

6

)k (5

6

)15−k
,



Example:
We flip a die 15 times, such that the outcome “2” is associated
with a success (=1), else failure (=0).

Ω = {0, 1}15

Suppose X counts the successes:

X (ω) = ω1 + ω2 + · · ·+ ω15.

{X = k} is the set of outcomes with exactly k successes.

What is P(X = k)?

P(X = k) =

(
15

k

)(
1

6

)k (5

6

)15−k
,



Example:
We flip a die 15 times, such that the outcome “2” is associated
with a success (=1), else failure (=0).

Ω = {0, 1}15

Suppose X counts the successes:

X (ω) = ω1 + ω2 + · · ·+ ω15.

{X = k} is the set of outcomes with exactly k successes.

What is P(X = k)?

P(X = k) =

(
15

k

)(
1

6

)k (5

6

)15−k
,



Example:
We flip a die 15 times, such that the outcome “2” is associated
with a success (=1), else failure (=0).

Ω = {0, 1}15

Suppose X counts the successes:

X (ω) = ω1 + ω2 + · · ·+ ω15.

{X = k} is the set of outcomes with exactly k successes.

What is P(X = k)?

P(X = k) =

(
15

k

)(
1

6

)k (5

6

)15−k
,



Example:
We flip a die 15 times, such that the outcome “2” is associated
with a success (=1), else failure (=0).

Ω = {0, 1}15

Suppose X counts the successes:

X (ω) = ω1 + ω2 + · · ·+ ω15.

{X = k} is the set of outcomes with exactly k successes.

What is P(X = k)?

P(X = k) =

(
15

k

)(
1

6

)k (5

6

)15−k
,



Example - Generalization

We can generalize the previous example:

Let Ω = {0, 1}n, where ω = 1 represents a success, and ω = 0
represents a failure.

Suppose X counts the successes of a n-times repeated experiment:

X (ω) = ω1 + ω2 + · · ·+ ωn.

Let p be the probability of success in each experiment.

{X = k} is the set of outcomes with exactly k successes.

Then

P(X = k) =

(
n

k

)
(p)k (1− p)n−k ,

Binomial distribution
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Range of a random variable

The set of all possible values of (R.V.) X = range of X = Ω

I Discrete random variables can only take isolated values.

Usually counts, e.g. number of successes in a game, number
of green balls in a bucket etc.

I Continuous random variables can take values in an interval.

For example: rainfall measurements, lifetimes of components,
lengths, etc. (at least in principle continuous).
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Probability Mass Function - Discrete R.V.

Definition (Probability mass function)

For a discrete random variable X , the function P(X = x) is called
the probability mass function (pmf) of X . We have for any
A ⊆ Ω = {x1, . . . , xn},

P(X ∈ A) =
∑
x∈A

P(X = x) =
∑
xi∈A

P(X = xi ) =
∑
xi∈A

pi ,

with

1. pi = P(X = xi ) ≥ 0 for all xi ,

2.
∑n

i=1 pi =
∑n

i=1 P(X = xi ) = 1.
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Example: Fair die

Toss a die and let X be its face value.

X has discrete range Ω = {1, 2, 3, 4, 5, 6}.

The probability mass function (pmf) of X is

x 1 2 3 4 5 6 Σ

p(x) = P(X = x) 1
6

1
6

1
6

1
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1
6

1
6 1
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Example: Maximum of two fair dice

Toss two dice and let Y be the largest face value showing.

Y has a discrete range Ω = {1, 2, 3, 4, 5, 6}.

The probability mass function (pmf) of Y is

y 1 2 3 4 5 6 Σ

p(y) = P(Y = y) 1
36

3
36

5
36

7
36

9
36

11
36 1

What is P(Y > 4)?

P(Y > 4) = P(Y = 5) + P(Y = 6) = 9+11
36 = 5

9 .
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Probability Density Function - Continuous R.V.

Definition (Probability density function)

For a continuous random variable X , the function f (x) is called
the probability density function (pdf) of X . We have for any
A = [a1, b1] ⊆ Ω = [a, b],

P(X ∈ A) = P(a1 ≤ x ≤ b1) =

∫ b1

a1

f (x) dx

with

1. f (x) ≥ 0 for all x ∈ Ω,

2.
∫∞
−∞ f (x)dx = 1.
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Probability Density Function

The function f is called the probability density function (pdf) of X .



Example:

Let f (x) = exp(− (x−350)
350 ).

Can f be a probability density function for the R.V. measuring the
mega-litres in the Fitzroy river with Ω = [0, 350]?

I f (x) ≥ 0

I ∫
x∈Ω

f (x)dx =

∫ 350

0
e−

(x−350)
350 dx

= 350
(
e−

(0−350)
350 − e−

(350−350)
350

)
= 350

(
e1 − 1

)
≈ 601 6= 1

−→ f is not a probability density function.
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Example:

Let f (x) = 2x
3502 .

Can f be a probability density function for the RV measuring the
mega-litres in the Fitzroy river with Ω = [0, 350]?

I f (x) ≥ 0

I
∫
x∈Ω f (x)dx =
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0
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3502 dx = 2

3502

∫ 350
0 x dx =

2
3502

(
x2

2

)
|350
0 = 1

−→ f is a probability density function.
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Summary: Probability Mass/Density Function

Ω

Discrete Continuous

pmf pi
P(X = xi ) = pi
I pi ≥ 0,

I
∑n

i=1 pi = 1.

pdf f
P(a ≤ X ≤ b) =

∫ b
a f (x)dx

I f (x) ≥ 0 for all x ∈ Ω,

I
∫

Ω f (x)dx = 1.
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Cumulative Distribution Function

Definition (Cumulative Distribution Function)

The cumulative distribution function (cdf) of a random variable
X is the function F defined by:

F (x) = P(X ≤ x).

Source:
http://reliability.srv.ualberta.ca/fundamental-probability-
concepts-theory/random-variables

Source:
http://home.ubalt.edu/ntsbarsh/business-
stat/opre504.htm
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Properties of cumulative distribution function

F (x) = P(X ≤ x).

1. 0 ≤ F (x) ≤ 1.

2. F is increasing: x ≤ y ⇒ F (x) ≤ F (y).

3. It holds that limx→∞F (x) = 1, and limx→−∞F (x) = 0.

4. F is right-continuous: limh→0+F (x + h) = F (x).
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Additional Property for Discrete R.V.

X discrete R.V.

Source:
http://reliability.srv.ualberta.ca/fundamental-probability-
concepts-theory/random-variables

Observation:

I cdf F is a step-function.

I cdf F jumps at all points
x ∈ Ω.

I The height of the jump at xi
is pi .
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Additional Property for Discrete R.V.

X continuous R.V.

Source:
http://home.ubalt.edu/ntsbarsh/business-
stat/opre504.htm

Observation:

I cdf F is continuous.

I By definition of F
F (x) = P(X ≤ x) =∫ x
−∞ f (x)dx , so

f (x) = d
dx F (x).
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Example:

Draw a random number from the interval of real numbers [1, 3].
Let X represent the number.
Each number is equally possible.

−→ uniform distribution.
What is the cdf F of X?

For example

F (2.8) = P(X ≤ 2.8) = P(1 ≤ X ≤ 2.8)
geometric prob.

= 2.8−1
3−1 = 1.8

2

to be continued next lecture.
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