

Analysis of Engineering and Scientific Data

Semester 1 - 2019

Sabrina Streipert **Example:**

s.streipert@uq.edu.au

Draw a random number from the interval of real numbers [1, 3]. Let X represent the number.

Each number is equally possible. \longrightarrow uniform distribution. What is the cdf F of X?

Recall, the pdf of the uniform distribution is

$$f(x) = \begin{cases} \frac{1}{2} & 1 \le x \le 3\\ 0 & \text{else.} \end{cases}$$

Therefore

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(x) \, \mathrm{d}x = \begin{cases} 1 & x > 3\\ \frac{1}{2}(x-1) & 1 \le x \le 3\\ 0 & x < 1. \end{cases}$$

Is any of these F a cdf of a continuous R.V.?

a)
$$F(x) = \begin{cases} 0 & x < -1 \\ 0.3 & -1 \le x < 1 \\ 1 & x \ge 1, \end{cases}$$
 b)
$$F(x) = \begin{cases} 0 & x < 0 \\ \frac{x}{2} & 0 \le x \log 1 \\ 1 & x > 1. \end{cases}$$

a)
$$F(x) = \begin{cases} 0 & x < -1 \\ 0.3 & -1 \le x < 1 \\ 1 & x \ge 1, \end{cases}$$

- 1. $0 \le F(x) \le 1$, \checkmark
- 2. F is increasing,
- 3. $\lim_{x\to\infty} F(x) = 1$ \checkmark and $\lim_{x\to-\infty} F(x) = 0$ \checkmark ,
- 4. $\lim_{h \to 0^+} F(x+h) = F(x)$

at
$$x = -1$$
:
 $\lim_{h \to 0} F(-1+h) = F(-1)$
 $\lim_{h \to 0} F(1+h) = F(1)$
 $\lim_{h \to 0} F(1+h) = F(1)$

All conditions are satisfied, so in fact F is a cdf.

b)
$$F(x) = \begin{cases} 0 & x < 0 \\ \frac{x}{2} & 0 \le x \le 1 \\ 1 & x > 1. \end{cases}$$

1. $0 \le F(x) \le 1$, \checkmark

2. F is increasing,

- 3. $\lim_{x\to\infty} F(x) = 1$ \checkmark and $\lim_{x\to-\infty} F(x) = 0$ \checkmark ,
- 4. $\lim_{h \to 0^+} F(x+h) = F(x)$

at
$$x = 0$$
:

$$\lim_{h \to 0} F(h) \stackrel{\checkmark}{=} \underbrace{F(0)}_{\frac{0}{2} = 0}$$
at $x = 1$:

$$\lim_{h \to 0} F(1+h) \stackrel{\times}{=} \underbrace{F(1)}_{\frac{1}{2}}$$

The last condition is not satisfied, so F is not a cdf.

The cdf and/or pmf/pdf specify the distribution of a R.V. X.

Crucial values for a distribution of X:

• $\mathbb{E}[X] =$ expectation of a random variable

 \sim "weighted average" of values of X, weighted by their probability

• Var(X) = variance of a random variable

~ "spread/dispersion" around $\mathbb{E}[X]$ of the distribution.

Expectation of a R.V.

Definition [Expectation]:

Let X be a R.V. with pmf P/pdf f. $\mathbb{E}[X]$ = the expectation (or expected value/mean value) of X, calculated as:

• X is discrete R.V.:

$$\mathbb{E}[X] = \mu_X = \sum_{x_i \in \Omega} x_i \ P(X = x_i).$$

• X is continuous R.V.:

$$\mathbb{E}[X] = \mu_X = \int_{x \in \Omega} x f(x) \, \mathrm{d}x.$$

Expectation - Example

• What is the expected value of a tossing of a fair die?

Note, $x_1 = 1, x_2 = 2, \dots, x_6 = 6$ and

$$P(X = 1) = \dots = P(X = 6) = \frac{1}{6},$$

we have

$$\mathbb{E}[X] = \sum_{x_i \in \Omega} x_i \ P(X = x_i) = \sum_{i=1}^{6} i \cdot \frac{1}{6} = 7/2.$$

Note: $\mathbb{E}[X]$ is not necessarily a possible outcome of X.

Expectation - Example

• What is the expected value of a uniform distributed R.V. X on (0, 50]? Recall pdf of uniform distributed R.V. X is:

$$f(x) = \begin{cases} 0 & x \in (-\infty, 0] \cup (50, \infty) \\ \frac{1}{50} & x \in (0, 50] \end{cases}$$

Therefore,

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x f(x) \, \mathrm{d}x = \int_{0}^{50} x \frac{1}{50} \, \mathrm{d}x$$
$$= \frac{1}{50} \cdot \frac{1}{2} \left(50^{2} - 0 \right) = 25$$

Expectation - Interpretation I

Interpretation of $\mathbb{E}[X]$ as "expected profit":

Suppose we play a game where you throw two dice. You are getting paid the sum of the dice in . To enter the game you must pay z.

What would be a "fair" amount for z?

$$z = \mathbb{E}[X] = \sum_{i=2}^{12} i \cdot P(X=i) =$$

= 2 \cdot P(X=2) + \dots + 12 \cdot P(X=12) =
= 2 \cdot \frac{1}{36} + 3 \cdot \frac{3}{36} + \dots + 12 \cdot \frac{1}{36} = 7.

Expectation - Interpretation II

Interpretation of $\mathbb{E}[X]$ as "Centre of Mass":

Imagine point masses with weights p_1, p_2, \ldots, p_n are placed at positions x_1, x_2, \ldots, x_n :

Centre of mass = place where we can "balance" the weights

$$= x_1 p_1 + \dots + x_n p_n = \sum_{x_i} x_i p_i = \sum_{x_i} x_i P(X = x_i) = \mathbb{E}[X].$$

Expectation of Transformations

Definition [Expectation of a function of X]: For any $g : \mathbb{R} \to \mathbb{R}$,

• if X is a discrete R.V., then

$$\mathbb{E}[g(X)] = \sum_{x_i \in \Omega} g(x_i) \ P(X = x_i),$$

where P is the pmf of X.

• if X is a continuous R.V., then

$$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x)f(x)\mathrm{d}x,$$

where f is the pdf of X.

Example:

Let X be the outcome of the toss of a fair die. Find $\mathbb{E}[X^2]$.

$$\mathbb{E}\left[X^2\right] = \sum_{i=1}^{6} x_i^2 P(X=x_i) = 1^2 \cdot \frac{1}{6} + 2^2 \cdot \frac{1}{6} + \dots + 6^2 \cdot \frac{1}{6} = \frac{91}{6}.$$

Note:

$$\frac{91}{6} = \mathbb{E}\left[X^2\right] \neq \left(\mathbb{E}\left[X\right]\right)^2 = \left(\frac{7}{2}\right)^2 = \frac{49}{4}.$$

Example:

Let X be uniformly distributed in $(0, 2\pi]$, and let $Y = g(X) = a \cos(\omega t + X)$ be the value of a sinusoid signal at time t (i.e., X is like a uniform random phase).

Find the expected value $\mathbb{E}[Y]$.

$$\mathbb{E}[Y] = \mathbb{E}[a \cos(\omega t + X)] = \int_0^{2\pi} a\cos(\omega t + x) \frac{1}{2\pi} dx$$
$$= a \frac{1}{2\pi} \sin(\omega t + x) \mid_0^{2\pi} = 0.$$

Properties of \mathbb{E}

- 1. $\mathbb{E}[aX+b] = a\mathbb{E}[X] + b.$
- 2. $\mathbb{E}[g(X) + h(X)] = \mathbb{E}[g(X)] + \mathbb{E}[h(X)].$

Proof. 1. Wlog X continuous with pdf f(x) (discrete case similar)

$$\mathbb{E}[aX+b] = \int_{\Omega} (ax+b)f(x)dx = a \int_{\Omega} xf(x)dx + b \int_{\Omega} f(x)dx$$
$$= a\mathbb{E}[X] + b \cdot 1 = a\mathbb{E}[X] + b.$$

2. $\mathbb{E}[g(X)+h(X)] = \int (g(x)+h(x))f(x)dx = \int g(x)f(x)dx + \int h(x)f(x)dx = \mathbb{E}[g(X)] + \mathbb{E}[h(X)].$

Variance of a R.V.

Definition [Variance]:

The variance of a random variable X, denoted by Var(X) is defined by

$$\operatorname{Var}(X) = \sigma_X^2 = \mathbb{E}[X - \mathbb{E}[X]]^2.$$

It may be regarded as a measure of the consistency of outcome: a smaller value of Var(X) implies that X is more often near $\mathbb{E}[X]$.

The square root of the variance is called the <u>standard deviation</u>.

The variance of a random variable

Properties of variance

1.
$$\operatorname{Var}(X) = \mathbb{E} \left[X^2 \right] - (\mathbb{E} \left[X \right])^2$$
.

2.
$$\operatorname{Var}(aX + b) = a^2 \operatorname{Var}(X)$$
.

Proof.

1.
$$\operatorname{Var}(X) = \mathbb{E}\left[(X - \mu_X)^2 \right] = \mathbb{E}\left[X^2 - 2X\mu_X + \mu_X^2 \right]$$
$$= \mathbb{E}\left[X^2 \right] - 2\mu_X(\mathbb{E}[X]) + \mu_X^2 = \mathbb{E}\left[X^2 \right] - \mu_X^2.$$

2.
$$\operatorname{Var}(aX+b) = \mathbb{E}\left[\left(aX+b-(a\mu_X+b)\right)^2\right]$$
$$= \mathbb{E}\left[a^2(X-\mu_X)^2\right] = a^2\operatorname{Var}(X).$$

Moments of a random variable

- $\mathbb{E}[X] = \mathbb{E}\left[X^1\right]$
- $\mathbb{E}[X^2] = \operatorname{Var}(X) + (\mathbb{E}[X^1])^2$
- $\mathbb{E}[X^r] =$ "r-th moment of X":
 - If X is discrete: $\mathbb{E}[X^r] = \sum_{i=1}^n x_i^r p_i$
 - If X is continuous: $\mathbb{E}[X^r] = \int_{\Omega} x^r f(x) \, \mathrm{d}x$

Remark: However, note that the expectation, or any moment of a random variable, need not always exist (could be $\pm \infty$).

Important Distributions:

- for a discrete R.V. X (discrete distribution)
 - 1. Bernoulli Distribution
 - 2. Binomial Distribution
 - 3. Geometric Distribution
- for a continuous R.V. X (continuous distribution)
 - 1. Uniform Distribution
 - 2. Exponential Distribution
 - 3. Normal Distribution

Discrete Distribution I - Bernoulli

R.V. X has a **Bernoulli distribution** with success probability p, denoted by $X \sim Ber(p)$, if $X \in \{0, 1\}$ and

$$P(X = 1) = p_1 = p$$
 $P(X = 0) = 1 - P(X = 1) = (1 - p)$

It models for example:

- a single coin toss experiment,
- a success or a failure of message passing,
- a success of a certain drug,
- or, randomly selecting a person from a large population, and ask if she votes for a certain political party.

Bernoulli Distribution - Properties

• The expected value is

$$\mathbb{E}[X] = 1 \times p + 0 \times (1 - p) = p.$$

• The variance is

$$\operatorname{Var}(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2 = 1^2 \times p + 0^2 \times (1-p) - p^2 = p(1-p).$$

Discrete Distribution II - Binomial

Binomial distribution = Sequence of independent Bernoulli trials, denoted by $X \sim Bin(n, p)$.

- $\Omega = \{0, 1\}^n$
- X = number of success in n trials,
- p = probability of success (for each Bernoulli trial).

Pmf of X:

$$P(X = x) = \binom{n}{x} p^{x} (1 - p)^{n - x}, \qquad x = 0, 1, 2, \dots, n$$

1						
9.9						-
0.0 -						-
0.7 -						-
0.6						-
0.5						-
0.4						-
0.3-						-
0.2						-
0.1						-
0	10	20	30	40	50	60

Binomial Distribution - Properties

• $\mathbb{E}[X] = \sum_{i=0}^{n} x_i p_i = \sum_{x=0}^{n} x {n \choose x} p^x (1-p)^{n-x}$ Alternatively: $X = X_1 + X_2 + \dots + X_n,$

where $X_i \sim \mathsf{Ber}(p)$, so

$$\mathbb{E}[X] = \mathbb{E}[X_1 + X_2 + \dots + X_n] = \sum_{i=1}^n \mathbb{E}[X_i] = np.$$

• $\operatorname{Var}(X) = \operatorname{Var}(X_1 + X_2 + \dots + X_n) = \sum_{i=1}^n \operatorname{Var}(X_i) = np(1-p).$

Example (Binomial Distribution):

In a country, 51% favours party A and 49% favours party B. What is the probability that out of 200 randomly selected individuals more people vote for B than for A?

- Let a vote for A be a "success".
- Selecting the 200 people is equivalent to performing a sequence of 200 independent Bernoulli trials with success probability 0.51.
- We are looking for the probability that we have less than 100 successes, which is

$$\sum_{i=0}^{99} \binom{200}{i} 0.51^i 0.49^{200-i} \approx 0.36.$$

Binomial Distribution

Discrete Distribution III - Geometric

Geometric Distribution:

- $\approx X$ is the number of (independent) Bernoulli trials until the first success,
- denoted by $X \sim G(p)$
- The pmf is:

$$P(X = x) = (1 - p)^{x-1}p, \quad x = 1, 2, 3, \dots$$

• $\mathbb{E}[X] = \frac{1}{p}$

•
$$\operatorname{Var}(X) = \frac{1-p}{p^2}$$

Example (Geometric Distribution):

Suppose you are looking for a job but the market is not very good, so the probability that the person is accepted (after a job interview) is only p = 0.05.

Let X be the number of interviews in which the person is rejected until he eventually finds a job.

TWhat is the probability that you need k > 50 interviews?

$$P(X = k) = (1 - p)^{50} (1 - p)^{(k - 50)} p < (1 - p)^{50} = 0.0769 \sim 8\%.$$

What is the probability that you need at least 15 but less than 30 interviews?

$$P(15 \le X < 30) = \sum_{i=15}^{29} 0.050.095^{i-1} = 0.05 \sum_{i=14}^{28} 0.95^i$$
$$= 0.05 \left[\frac{1 - 0.95^{29}}{1 - 0.95} - \frac{1 - 0.95^{14}}{1 - 0.95} \right] = 0.05 \left[15.4813 - 10.2465 \right] \sim 0.2617$$