

Analysis of Engineering and Scientific Data

Semester 1 - 2019

Sabrina Streipert

s.streipert@uq.edu.au

Geometric Distribution — Memoryless Property

Suppose, we have tossed the coin k times without a success (Heads). What is the probability that we need more than x additional tosses before getting a success?

$$P(X = k+x \mid X = k) = \frac{P(X = x+k, X = k)}{P(X = k)} = \frac{P(X = x+k)}{P(X = k)} = \frac{p(1-p)^{k+x-1}}{p(1-p)^{k-1}} = (1-p)^x$$

or similarly

$$P(X > k+x \mid X > k) = \frac{P(X > k+x, X > k}{P(X > k)} = \frac{P(X > k+x)}{P(X > k)} = \frac{(1-p)^{k+x}}{(1-p)^k} = (1-p)^x.$$

 $\longrightarrow \underline{P(X > k + x \mid X > k)} = \underline{P(X > x)}$ so the probability of having x more "losses" remains the same even if you had already k "losses"

Continuous Distribution I - Uniform

X has a **uniform distribution** on [a, b], $X \sim \mathsf{U}[a, b]$, if its pdf f is given by

$$f(x) = \begin{cases} \frac{1}{b-a} & x \in [a,b] \\ 0 & \text{else} \end{cases}$$

For example used when modelling a randomly chosen point from the interval [a, b], where each choice is equally likely.

Figure 1: The pdf of the uniform distribution on [a, b].

Uniform Distribution - Properties

•
$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x f(x) \, \mathrm{d}x = \int_{a}^{b} x \frac{1}{b-a} \, \mathrm{d}x = \frac{1}{2(b-a)} (b^2 - a^2) = \frac{a+b}{2}$$

•
$$\operatorname{Var}(X) = \underbrace{E[X^2] - (E[X])^2 = \int_a^b x^2 \frac{1}{b-a} \, \mathrm{d}x - \left(\frac{a+b}{2}\right)^2 = \underbrace{\frac{(b^{-a})(b^2 + ab + a^2)}{3(b-a)} - \frac{a^2 + 2ab + b^2}{4}}_{3(b-a)}}_{= \frac{b^2 + ab + a^2}{3} - \frac{a^2 + 2ab + b^2}{4} = \frac{4b^2 + 4ab + 4a^2 - 3a^2 - 6ab - 3b^2}{12} = \frac{a^2 - 2ab + b^2}{12} = \frac{(a-b)^2}{12}$$

Example (Uniform Distribution):

Draw a random number from the interval of real numbers [0, 2]. Each number is equally possible. Let X represent the number.

1. Find the probability density function f.

$$f(x) = \begin{cases} \frac{1}{2} & x \in [0, 2] \\ 0 & \text{else} \end{cases}$$

2. What is the probability that the chosen number is within $(1.8, \pi)$?

Note that $\pi > 2!$

$$\int_{1.8}^{2} \frac{1}{2} \, \mathrm{d}x = \frac{2 - 1.8}{2} = 0.1$$

Continuous Distribution II - Exponential

X is an **exponential distribution** with parameter $\lambda > 0$, $X \sim \mathsf{Exp}(\lambda)$, if the pdf of X is

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0, \\ 0 & \text{else} \end{cases}$$

 \sim continuous version of the geometric distribution.

Used for example to analyse:

• Lifetime of an electrical component.

- Time between arrivals of calls at a telephone exchange.
- Time elapsed until a Geiger counter registers a radio-active particle.

Exponential Distribution - Properties

• Using integration by parts (Recall $\int_a^b v'w = vw|_a^b - \int_a^b wv)$

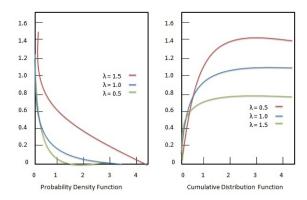
$$\mathbb{E}[X] = \int_0^\infty \underbrace{x}_{\lambda e^{-\lambda x}} \frac{v'}{\mathrm{d}x} = x \left(-e^{-\lambda x}\right) |_0^\infty - \int_0^\infty \left(-e^{-\lambda x}\right) \mathrm{d}x$$
$$= 0 - 0 - \int_0^\infty \left(-e^{-\lambda x}\right) \mathrm{d}x = -\frac{1}{\lambda} e^{-\lambda x} |_0^\infty = -0 + \frac{1}{\lambda} = \frac{1}{\underline{\lambda}}$$

•
$$\operatorname{Var}(X) = \frac{1}{\lambda^2}$$

• The cdf of X is given by:

$$F(x) = P(X \le x) = \int_0^x \lambda e^{-\lambda x} \, \mathrm{d}x = -\int_0^x \left(-\lambda e^{-\lambda x}\right) \, \mathrm{d}x = -e^{-\lambda x}|_0^x = 1 - e^{-\lambda x}$$

if $x \ge 0$, else F(x) = 0. (Note F(0) = 0 since the integral collapses.)



Exponential Distribution - Memoryless Properties

• The Exponential Distribution is the only continuous distribution that has the memoryless property:

$$P(X > s + t \mid X > s) = \frac{P(X > s + t, X > s)}{P(X > s)} = \frac{P(X > s + t)}{P(X > s)}$$
$$= \frac{1 - P(X \le s + t, X > s)}{1 - P(X \le s)} = \frac{1 - F(s + t)}{1 - F(s)} = \frac{1 - [1 - e^{-\lambda(s + t)}]}{1 - [1 - e^{-\lambda s}]}$$
$$= \frac{e^{-\lambda(s + t)}}{e^{-\lambda s}} = e^{-\lambda t} = 1 - [1 - e^{-\lambda t}] = 1 - F(t)$$
$$= P(X > t)$$

Example (Exponential Distribution):

The time a postal clerk spends with customers is exponentially distributed with the average time of 4 minutes. What is the probability that the clerk spends four to five minutes with a customer?

Since the mean is 4 minutes, we know that $\lambda = \frac{1}{4}$.

$$P(4 \le X \le 5) = \int_{4}^{5} \frac{1}{4} e^{-\frac{1}{4}x} \, \mathrm{d}x = e^{-\frac{1}{4}4} - e^{-\frac{1}{4}5} = e^{-1} - e^{-\frac{5}{4}} \approx 0.081$$

After how many minutes are half of the customers finished?

We need to solve $P(X \le k) = 0.5$ for k:

$$P(X \le k) = 0.5$$

$$F(k) = 0.5$$

$$1 - e^{-\frac{1}{4}k} = 0.5$$

$$0.5 = e^{-\frac{1}{4}k}$$

$$\log(0.5) = -\frac{1}{4}k$$

$$-4\log(0.5) = k \longrightarrow k \approx 2.77$$

Continuous Distribution III - Normal

X is normal (or Gaussian) distributed with parameters μ and σ^2 , $X \sim N(\mu, \sigma^2)$, if the pdf f of X is given by

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}, \quad x \in \mathbb{R}.$$

Special case: Standard Normal Distribution

If $\mu=0$ and $\sigma=1$ then

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}, \quad x \in \mathbb{R}$$

Normal Distribution - Properties

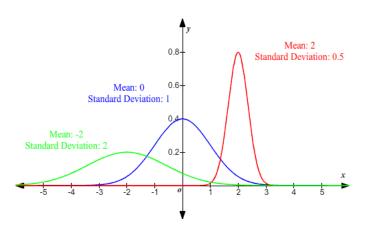
- $\mathbb{E}[X] = \underline{\mu}$
- $\operatorname{Var}(X) = \underline{\sigma^2}$

• If $X \sim \mathsf{N}(\mu, \sigma^2)$, then

$$\frac{X-\mu}{\sigma} \sim \mathsf{N}(0,1). \qquad \longrightarrow \text{ standardisation}$$

• If
$$X \sim \mathsf{N}(\mu, \sigma^2)$$
, then

$$X = \mu + \sigma Z$$
 where $Z \sim N(0, 1)$



 $Source: \ https://www.varsitytutors.com/hotmath/hotmathhelp/topics/normal-distribution-of-data \ Source: \ https://www.varsitytutors.com/hotmath/hotmath/hotmathhelp/topics/normal-distribution-of-data \ Source: \ https://www.varsitytutors.com/hotmath/hotmathhelp/topics/normal-distribution-of-data \ Normal-distribution-of-data \ Normal-data \ Norma$

It is very common to compute P(a < X < b) for $X \sim \mathsf{N}(\mu, \sigma^2)$ via standardization as follows.

$$P(a < X < b) = P\left(\frac{a - \mu}{\sigma} < \frac{\widetilde{X - \mu}}{\sigma} < \frac{b - \mu}{\sigma}\right) = P\left(\frac{a - \mu}{\sigma} < Z < \frac{b - \mu}{\sigma}\right)$$
$$= P\left(Z < \frac{b - \mu}{\sigma}\right) - P\left(Z \le \frac{a - \mu}{\sigma}\right) = F_Z\left(\frac{b - \mu}{\sigma}\right) - F_Z\left(\frac{a - \mu}{\sigma}\right)$$

That is,

$$P(a < X < b) = F_X(b) - F_X(a) = F_Z\left(\frac{b-\mu}{\sigma}\right) - F_Z\left(\frac{a-\mu}{\sigma}\right).$$

Inverse-Transformation

Exponential R.V. - inverse

For the exponential distribution, we have

$$F(x) = 1 - \mathrm{e}^{-\lambda x}.$$

For $y \in (0,1)$ and $\lambda \neq 0$,

$$y = 1 - e^{-\lambda x} \quad \leftrightarrow \quad \log(1 - y) = -\lambda x \quad \leftrightarrow \quad -\frac{1}{\lambda}\log(1 - y) = x$$

Chapter 5

- 1. Joint Probability Mass/Density Function
- 2. Joint Cumulative Distribution Function
- 3. Marginal Distributions, Marginal Expected Values
- 4. Covariance, Correlation Coefficient
- 5. Independence
- 6. Conditional pdf/pmf, Conditional cdf, Conditional Expectation
- 7. Generalization: Random Vector

Joint Distributions - Motivation

We analyse the student's weight X and height Y.

Aim: Specify a model for the outcomes?

Note: Can't just specify the pdf or pmf of one variable,, we also need to specify the interaction between weight and height

 \longrightarrow Need to specify the joint distribution of weight and height (in general: all random variables X_1, \ldots, X_n involved).

Joint Distributions - Example

Example:

In a box are three dice.

- Die 1 is a normal die;
- Die 2 has no 6 face, but instead two 5 faces;
- Die 3 has no 5 face, but instead two 6 faces.

The experiment consists of selecting a die at random, followed by a toss with that die.

Let X be the die number that is selected, and let Y be the face value of that die.

 \longrightarrow joint probability mass function/table

Note:

$$P(X = x) = \sum_{y_j \in \Omega_y} P(X = x, Y = y_j)$$

	<i>y</i>						
x	1	2	3	4	5	6	Σ
1	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{3}$
2	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{9}$	0	$\frac{1}{3}$
3	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{18}$	0	$\frac{1}{9}$	$\frac{1}{3}$
Σ	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	1

Figure 2: Joint pmf for unfair dice example.

and

$$P(Y = y) = \sum_{x_i \in \Omega_x} P(X = x_i, Y = y)$$

 \longrightarrow marginal probability (mass) function

- 1. $P(X = 2, Y = 4) = \frac{1}{18}$ (value in the 2nd row and 4th column in the probability mass table)
- 2. $P(X = 2) = \frac{1}{3}$ (sum all the probabilities in the second row)
- 3. $P(Y < 5) = \frac{4}{6} = \frac{2}{3}$ (sum all the probabilities in columns 1 to 4)

Joint Probability Mass Function

Definition:

Let (X, Y) be a <u>discrete</u> random vector. The function $(x, y) \to P(X = x, Y = y)$ is called the *joint probability mass function* of X and Y.

Let $\Omega_{X,Y}$ be the set of possible outcomes of (X,Y). Let $B \subset \Omega_{X,Y}$, then

$$P((X,Y) \in B) = \sum_{x \in B_X} \sum_{y \in B_Y} P(X = x, Y = y)$$

Joint pmf - Properties

- 1. $P(X = x, Y = y) \ge 0$, for all x and y.
- 2. $\sum_{x \in \Omega_X} \sum_{y \in \Omega_Y} P(X = x, Y = y) = 1.$
- 3. Marginal pmf of X:

$$P_X(X = x) = \sum_{y \in \Omega_y} P(X = x, Y = y)$$

4. Marginal pmf of Y:

$$P_Y(Y = y) = \sum_{x \in \Omega_x} P(X = x, Y = y)$$

Joint Probability Density Function

Definition:

We say that <u>continuous</u> random variables X and Y have a joint probability density function if, for all events $\{(X, Y) \in A \subset \Omega \subset \mathbb{R}^2\}$, we have

$$P((X,Y) \in A) = \int_{x \in A_x} \int_{y \in A_y} f_{X,Y}(x,y) \,\mathrm{d}y \,\mathrm{d}x$$

We often write $f_{X,Y}$ for f.

Joint pdf - Properties

- 1. $f(x, y) \ge 0$, for all x and y.
- 2. $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \, \mathrm{d}x \, \mathrm{d}y = 1.$

3. Marginal pdf of X:

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) \,\mathrm{d}y$$

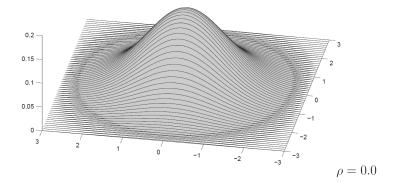
4. Marginal pdf of Y:

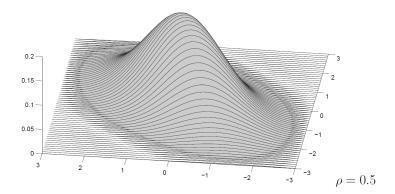
$$f_Y(y) = \int_{-\infty}^{\infty} f(x, y) \,\mathrm{d}x$$

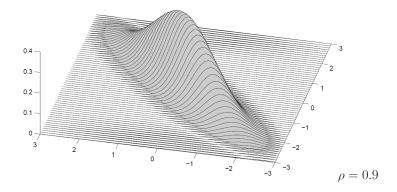
Example of a joint pdf: The Bivariate normal distribution:

We say that X and Y have a bi-variate Gaussian (or normal) distribution with parameters $\mu_1, \mu_2, \sigma_1^2, \sigma_2^2$ and $\rho \in [-1, 1]$ if the joint density function is given by

$$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}e^{\frac{(x-\mu_1)^2}{\sigma_1^2} - 2\rho\frac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2}}$$







Joint Cumulative Distribution Function

Joint Cumulative Distribution Function (joint cdf):

$$F(x,y) = P(X \le x, Y \le y)$$

• If X, Y are discrete R.V., then the joint cdf is

$$F(x,y) = \sum_{x_i \le x} \sum_{y_j \le y} P(X = x_i, Y = y_j)$$

• If X, Y are continuous R.V., then the joint cdf is

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(x,y) \, \mathrm{d}y \, \mathrm{d}x$$

Note also:

$$\frac{\partial^2}{\partial x \partial y} F(x,y) = f(x,y)$$

Expected value

• If X, Y are discrete R.V., the marginal expected value is:

$$E[X] = \sum_{x \in \Omega_x} x P_X(X = x) = \sum_{x \in \Omega_x} x \left[\sum_{y \in \Omega_y} P(X = x, Y = y) \right],$$

where $P_X(X = x)$ is the marginal pmf of X.

• If X, Y are continuous R.V., the marginal expected value is:

$$E[X] = \int_{x \in \Omega_x} x f_X(x) \, \mathrm{d}x = \int_{x \in \Omega_x} x \left[\int_{\mathbb{R}} f(x, y) \, \mathrm{d}y \right] \, \mathrm{d}x,$$

where $f_X(x)$ is the marginal pdf of X.

• Linearity:

$$E[aX + bY] = aE[X] + bE[Y]$$

Example - revisited

Recall the joint pmf for unfair dice example, see Figure 2.

1. Joint pmf: $P(X \le 2, Y < 5) = \frac{8}{18}$ (sum all probabilities in columns 1 to 4 and rows 1 to 2.)

2. Marginal expected value:

$$E(X) = \sum_{i=1}^{3} i P_X(X = x) = \sum_{i=1}^{3} i \frac{1}{3} = \frac{1}{3} \frac{3 \cdot 4}{2} = 2$$

(since P_X is the marginal probabilities for X = summations over the rows)

3. Marginal expected value:

$$E(Y) = \sum_{j=1}^{j} P_Y(Y=y) = \sum_{j=1}^{6} j\frac{1}{6} = \frac{1}{6}\frac{6\cdot7}{2} = \frac{7}{2}$$

(since P_Y is the marginal probabilities for Y = summations over the columns)