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Covariance and Correlation

Definition:

The covariance of X and Y is

cov(X,Y ) := E [(X − E[X]) (Y − E[Y ])]

Basically, it is a measure for the amount of linear dependency between the

variables.

The correlation (correlation coefficient) of X,Y is

ρ(X,Y ) =
cov(X,Y )√

Var(X)
√

Var(Y )
∈ [−1, 1]

Properties of Variance and Covariance

• cov(X,Y ) = E [XY ]− E[X]E[Y ].
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• cov(X,Y ) = cov(Y,X).

• cov(aX + bY, Z) = acov(X,Z) + bcov(Y,Z)

• cov(X,X) = Var(X)

• Marginal Variance: Var(X) = E[X2]− (E[X])
2

• Var(X + Y ) = Var(X) + Var(Y ) + 2cov(X,Y ).

Example - revisited:

Recall the joint pmf for unfair dice example from last time.
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2. Covariance:

cov(X,Y ) = E[XY ]− E[X]E[Y ] =

6∑
j=1

3∑
i=1

ijp(X = i, Y = j)−
E[X]︷︸︸︷
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7
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3. Correlation: ρ(X,Y ) = cov(X,Y )√
Var(X)·

√
Var(Y )

=
1
18√

2
3 ·
√

35
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= 1
3·
√
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Since

E[Y 2] =
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j2 1
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and therefore

Var(X) = E[Y 2]− (E[Y ])
2

=
91

6
−
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=
182− 147

12
=
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.

Conditional Probability Mass Function

Definition:

If X,Y are discrete R.V. and P (X = x) > 0, then the conditional proba-

bility mass function of Y given X = x is:

P (Y = y | X = x) =
P (Y = y,X = x)

P (X = x)
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If X,Y are continuous R.V. and fX(x) > 0, then the conditional prob-

ability density function of Y given X = x is:

fY (y | x) =
fX,Y (x, y)

fX(x)

Conditional Cumulative Distribution Function

conditional cdf:

FY (Y = y | X = x) = P (Y ≤ y | X = x)

• If X,Y are discrete R.V. and P (X = x) > 0, then

FY (Y = y | X = x) = P (Y ≤ y | X = x) =
P (Y ≤ y,X = x)

P (X = x)

• If X,Y are continuous R.V., then

FY (Y = y | X = x) = P (Y ≤ y | X = x) =

∫ y

−∞
fY (y | x) dy

Conditional Expectation

• If X,Y are discrete R.V., then the conditional expectation of Y given

X = x is:

E[Y | X] =
∑
y

yP (Y = y | X = x))

and the conditional expectation of X given Y = y is:

E[X | Y ] =
∑
x

xP (X = x | Y = y))
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• If X,Y are continuous R.V., then the conditional expectation of Y

given X = x is:

E[Y | X] =

∫ ∞
−∞

yFY (y | x) dy

and the conditional expectation of X given Y = y is:

E[X | Y ] =

∫ ∞
−∞

xFX(x | y) dx

Example:

We draw at random a point (X,Y ) from the 10 points on the triangle D, see

Figure 1.

Figure 1: Drawing a point in D.

• Joint pmf: P (X = i, Y = j) = 1
10 (i, j) ∈ D.

• Marginal pmf of X: P (X = i) = 5−i
10 , i = 1, 2, 3, 4

• Marginal pmf of Y :

P (Y = j) = j
10 , j = 1, 2, 3, 4
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• Conditional pmf:

P (Y = j | X = i) =
P (Y = j,X = i)

P (X = i)
=

1
10

5−i
10

=
1

5− i
.

• Conditional Expectation:

E[Y |X = i] =
∑4

j=1 jP (Y = j | X = i) =
∑4

j=1 j
1

5−i = 1
5−i

∑4
j=1 j =

1
5−i

4·5
2 = 10

5−i

Independence of two Random Variables

Definition:

X,Y are independent R.V. if any event defined by X is independent of every

event defined by Y , i.e.,

•

P ((X ∈ A) ∩ (Y ∈ B)) = P (X ∈ A)P (Y ∈ B)

for any A and B,

• i.e.,

F (x, y) = FX(x)FY (y)

• i.e., (if X,Y are discrete R.V.):

P (X = x, Y = y) = PX(x)PY (y)

• i.e., (if X,Y are continuous R.V.):

fX,Y (x, y) = fX(x)fY (y)
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Independence - Properties

• If X,Y are independent −→ cov(X,Y ) = 0

• If X,Y are independent
?←− cov(X,Y ) = 0

NO! For example, let X ∼ U(−1, 1) then E[X] = 0. Take Y = g(X) =

X2, then E[XY ] = E[X3] = 0 so cov(X,Y ) = 0 but clearly the variables

are dependent.

• If X,Y are independent −→ ρ(X,Y ) = 0

• If X,Y are independent (recall: cov(X,Y ) = 0)

−→ V ar(aX+bY ) = V ar(ax)+V ar(bY )+2

=0︷ ︸︸ ︷
cov(aX, bY ) = a2Var(X)+b2Var(Y )

Example - revisited:

Recalling previous example, see Figure 1.

We note that

P (X = 2, Y = 2) =
1

10
6= P (X = 2)P (Y = 2) =

5− 2

10
· 2

10
=

6

100

−→ X and Y are dependent

Consider now, that we draw at random a point (X,Y ) from the 16 points

on the square E, see Figure 2.

Then,

P (X = 2, Y = 2) =
1

16
= P (X = 2)P (Y = 2) =

4

16
· 4

16
=

1

16
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Figure 2: 16 points on the square E.

−→ X and Y are independent

That does not yet imply independence, since equality has to hold for all values

of x and y. To show that in fact X and Y are independent, one has to show:

P (X = x, Y = y) = P (X = x)P (Y = y).

Note that in fact X and Y are independent, since

1

16
= P (X = i, Y = j) = P (X = i)P (Y = j) =

4

16
· 4

16
=

1

16

for any (i, j) ∈ E.

Generalization to multiple random variables

Let X1, X2, . . . , Xn be random variables (random vector):

• If Xi’s are discrete, there exists a joint pmf p:

p(x1, . . . , xn) = P (X1 = x1, . . . , Xn = xn).

• If Xi’s are continuous, there exists a joint pdf f :

f(x1, . . . , xn) =
∂nF (x1, . . . , xn)

∂x1 · · · ∂xn
.
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• Joint cdf F :

F (x1, x2, . . . , xn) = P (X1 ≤ x1, X2 ≤ x2, · · · , Xn ≤ xn).

• If X1, X2, . . . , Xn are discrete R.V., then they are independent if:

P (X1 = x1, . . . , Xn = xn) = P (X1 = x1) · P (X2 = x2) · · ·P (Xn = xn),

for all x1, x2, . . ..

• If X1, X2, . . . , Xn are continuous R.V., then they are independent if:

f(x1, . . . , xn) = fX1
(x1) · · · fXn

(xn).

• An infinite sequence X1, X2, . . . of R.V. is called independent if for any fi-

nite choice of parameters i1, i2, . . . , in (none of them the same), Xi1 , . . . , Xin

are independent.

• Let X1, . . . , Xn be discrete R.V.s, with means µ1, . . . , µn.

• Let Y = a+ b1X1 + b2X2 + · · ·+ bnXn where a, b1, . . . , bn are constants.

Then

E[Y ] = E[a+ b1X1 + b2X2 + · · ·+ bnXn] =

= a+ b1E[X1] + · · · bnE[Xn] = a+ µ1 + b1 · · ·+ bnµn.

• If X1, . . . , Xn are independent, then

E[X1X2 · · ·Xn] = E[X1]E[X2] · · ·E[Xn].
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Jointly Gaussian RVs

• The n-dimensional density of the random vector

X = (X1, . . . , Xn)>

(column vector), with X1, . . . , Xn independent and standard normal, is

fX(x) = (2π)−
n
2 e−

1
2x
>x.

• We consider now the function (transformation) Z = µ+BX. The pdf of

Z is

fZ(z) =
1√

(2π)n|Σ|
e−

1
2 (x−µ)>Σ−1(x−µ),

where Σ = BB>.

• Z is said to have a multi-variate Gaussian (or normal) distribution with

expectation vector µ and covariance matrix Σ.

A very important property of the normal distribution is for independent

Xi ∼ N(µi, σ
2
i ), i = 1, . . . , n.

Specifically, the random variable

Y = a+

n∑
i=1

biXi,

is distributed

N

(
a+

n∑
i=1

bi µi,

n∑
i=1

b2i σ
2
i

)
.
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Consider the 2-dimensional case with µ = (µ1, µ2)>, and

B =

 σ1 0

ρσ1σ2 σ2

 .

The covariance matrix is now

Σ = BB> =

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

 .

Therefore, the density is

fZ(z) = fZ(z1, z2) =
1

2πσ1σ2

√
1− ρ2

×

×
{

exp
(z1 − µ1)2

σ2
1

− 2ρ
(z1 − µ1)(z2 − µ2)

σ1σ2
+

(z2 − µ2)2

σ2
2

}

This is the pdf of the bi-variate Gaussian distribution, which we encountered

earlier.

Example A machine produces ball bearings with a N(1, 0.01) diameter (cm).

The balls are placed on a sieve with a N(1.1, 0.04) diameter. The diameter of

the balls and the sieve are assumed to be independent of each other. What is

the probability that a ball will fall through?

Solution

• Let X ∼ N(1, 0.01) and Y ∼ N(1.1, 0.04).

• We need to calculate P (Y > X) = P (Y −X > 0).
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• But, T := Y −X ∼ N(0.1, 0.05). Hence,

P (T > 0) = P

(
T − 0.1√

0.05
> − 0.1√

0.05

)
= P

(
Z > − 0.1√

0.05

)
= 1− Φ(−0.447) ≈ 0.67.

Transformations of R.V. - Motivation

1. Let X1 is the amount of daily sugar intake of Australians and X2 the sugar

intake of Europeans, and X3 of Asians. Suppose we are interested in the

mean of the daily sugar intake across countries, that is

1

3
(X1 +X2 +X3)

2. Let X1, . . . , Xn be the lifetimes of n components in a series system. Then,

the lifetime of the system is

min{X1, X2, . . . , Xn}

3. Let X1, . . . , Xn be the risk of a portfolio with n financial assets Xi. A risk

averse person will look at

max{X1, X2, . . . , Xn}

to analyse the risk of the portfolio.
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Transformations of R.V. - Properties

• Let Xi be discrete R.V. for i = 1, . . . , n and Z = g(X1, . . . , Xn), then

E[Z] =
∑
x1

. . .
∑
xn

g(x1, . . . , xn)P (X1 = x1, X2 = x2, . . . , Xn = xn)

• Let Xi be continuous R.V. for i = 1, . . . , n and Z = g(X1, . . . , Xn), then

E[Z] =

∫
R
. . .

∫
R
g(x1, . . . , xn)f(x1, x2, . . . , xn) dx1 . . . dxn

Descriptive Statistics

• Visualisation of the data.

• Analysis and presentation of characteristics of the data.

Data types

Possible data types:

1. Continuous quantitative data−→ values in continuous range (height, width,

length, temperature, humidity, volume, area, and price)

2. Discrete qualitative data (factor / categorical variable) −→ values in dis-

crete range (number of family members, gender (male or female), count

of objects).

Discrete Sub-types:

• Nominal factors = variables without order, such as males and females.

• Ordinal factors = variable with a certain order, such as age group.
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Data configurations

• Many possible data configurations

• Each configuration will consist of continuous and discrete (ordinal and

nominal) variables.

• Major configuration types:

– A single sample configuration consists of m scalars:

D = {x1, x2, . . . , xm}.

Nr of fisherman per day; m = 365 and xi = 0, 1, . . ..

– Two (or more) sets of samples:

D =
{ {

x1
1, . . . , x

1
m1

}
,
{
x2

1, . . . , x
2
m2

}
, . . . ,

{
xk1 , . . . , x

k
mk

} }
.

Nr of fisherman per day in k different regions.

– Data tuples: D = {(x1,1, x1,2), (x2,1, x2,2), . . . , (xm,1, xm,2)}.

xi,1 = Nr of fisherman at ith day, xi,2 is the number of fishing nets

used at day i.

– Generalization of tuples to vectors:

D = {(x1,1, . . . , x1,n), . . . , (xm,1, . . . , xm,n)}

xi,1 = Nr of fisherman at ith day, xi,2 is the number of fishing nets

used at day i, xi,3 = Sea-Surface temperature at day i, etc.
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1. Data tables

The table rows represent observed measurements for independent variables

(columns).

Observ. variable 1 variable 2 · · · variable i · · · variable n
1 · · · · · ·
2 · · · · · ·
...

...
...

...
...

...
...

m · · · · · ·

1 library(carData)

2 D <- Arrests

3 tail(D)

4

5 #or alterantive:

6 library(data.table)

7 print(data.table(D))

Figure: Data on police arrests in Toronto for possession of marijuana.
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