
Analysis of Engineering and Scientific Data

Semester 1 – 2019

Sabrina Streipert s.streipert@uq.edu.au



Descriptive Statistics

I Visualisation of the data.

I Analysis and presentation of characteristics of the data.



Data types

Possible data types:

1. Continuous quantitative data −→ values in continuous range
(height, width, length, temperature, humidity, volume, area,
and price)

2. Discrete qualitative data (factor / categorical variable) −→
values in discrete range (number of family members, gender
(male or female), count of objects).

Discrete Sub-types:
I Nominal factors = variables without order, such as males and

females.

I Ordinal factors = variable with a certain order, such as age
group.
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Data configurations
I Each configuration will consist of continuous and discrete

(ordinal and nominal) variables.

I Major configuration types:
I A single sample configuration consists of m scalars:
D = {x1, x2, . . . , xm}.
Nr of fisherman per day; m = 365 and xi = 0, 1, . . ..

I Two (or more) sets of samples:

D =
{ {

x1
1 , . . . , x

1
m1

}
,
{
x2

1 , . . . , x
2
m2

}
, . . . ,

{
xk1 , . . . , x

k
mk

} }
.

Nr of fisherman per day in k different regions.

I Data tuples: D = {(x1,1, x1,2), (x2,1, x2,2), . . . , (xm,1, xm,2)}.
xi,1 = Nr of fisherman at ith day, xi,2 is the number of fishing
nets used at day i .

I Generalization of tuples to vectors:

D = {(x1,1, . . . , x1,n), . . . , (xm,1, . . . , xm,n)}
xi,1 = Nr of fisherman at ith day, xi,2 is the number of fishing
nets used at day i , xi,3 = Sea-Surface temperature at day i , . . .
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1. Data tables

The table rows represent observed measurements for independent
variables (columns).

Observ. variable 1 variable 2 · · · variable i · · · variable n

1 · · · · · ·
2 · · · · · ·
...

...
...

...
...

...
...

m · · · · · ·



1 library(carData)

2 D <- Arrests

3 tail(D)

4

5 #or alterantive:

6 library(data.table)

7 print(data.table(D))

Figure: Data on police arrests in Toronto for possession of marijuana.



Data summarization
A statistic is a numerical quantity, such as the proportion, that is
computed from a sample x1, . . . , xm.

1 library(dplyr)

2 D1 <- D %>% group_by(sex) %>% summarize(Count_

Arrests = n(), Proportion = Count_Arrests/

nrow(D))

3 D1



Data summarization
Study a correlation between the two factor variables using the so
called contingency table:

1 D2 <- D %>% mutate(sex = ifelse(sex=="Female"

,1,0), employed = ifelse(employed == "Yes"

,1,0)) %>%

2 select(sex , employed ,age , year)

3

4 round(cor(D2), digits = 3)



Summary Statistics = tool for an exploration of a variable.
Given a data vector of numbers x = (x1, . . . , xn), we have:

I Sample mean:

x =
1

n

n∑
i=1

xi .

1 D <- Arrests

2 mean(D$age)

3 > 23.84654

4

5 #or alternative:

6 sum(D$age)/nrow(D)

7 > 23.84654
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Describing quantitative data

I Range of data:

range = max
1≤i≤n

xi − min
1≤i≤n

xi .

I The order statistics.
First, sort the data to obtain x(1) ≤ x(2) ≤ . . . ≤ x(n), and
observe the following.

1. The minimum: x(1).
2. The maximum: x(n).
3. The median x̃ = “middle” of data.

(order the data: x1 ≤ x2 ≤ · · · ≤ xn):

x( n+1
2 ) if n is odd,

1
2

(
x( n

2 ) + x( n+1
2 )

)
if n is even.
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1 D <- Arrests

2

3 R <- max(D$age) - min(D$age)

4 > 54

5

6 Min_age <- min(D$age)

7 > 12

8

9 Max_age <- max(D$age)

10 > 66

11

12 Med_age <- median(D$age)

13 > 21



I Sample Variance (data - spread):

s2 =
1

n − 1

n∑
i=1

(xi − x)2,

where x is the sample mean.

Sample Standard Deviation = s =
√
s2

I Sample Correlation Coefficient:

rxy =

∑n
i=1 (xi − x) (yi − y)√∑n

i=1 (xi − x)2 ∑n
i=1 (yi − y)2
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1 D <- Arrests

2 # Sample Variance

3 Sample_Var <- var(D$age)

4 > 69.15807

5

6 #or alterantively

7 mean_age <- mean(D$age)

8 D3 <- D %>% mutate(Diff = age -mean_age , Diff_squ

= Diff*Diff)

9 Sample_Var <- sum(D3$Diff_squ)/(nrow(D3) -1)

10 > 69.15807

11

12

13 # Sample Standard Deviation

14 sd(Sampel_Var)

15 > 8.316133

16

17 # or alternatively:

18 Sample_STD <- sqrt(Sample_Var)

19 > 8.316133



1 D <- Arrests

2 D4 <- D %>% mutate(sex = ifelse(sex=="Female"

,1,0))

3

4 # Sample Correlation Coefficient

5 Sample_cor <- cor(D4$age , D4$sex)

6 > -0.01148502

7

8 #or alterantively

9 mean_age <- mean(D4$age)

10 mean_sex <- mean(D4$sex)

11 D5 <- D4 %>% mutate( Num = (age -mean_age)*(sex -

mean_sex), Denom1 = (age -mean_age)**2, Denom2

= (sex -mean_sex)**2)

12

13 Sample_cor <- sum(D5$Num)/sqrt(sum(D5$Denom1)*

sum(D5$Denom2))

14 > -0.01148502



Describing quantitative data

I p-quantile (0 < p < 1)
= z such that F (z) = P(X ≤ z) = p

Common values: 0.25, 0.5, 0.75 quantiles (=25, 50, and 75
percentiles /first, second, and third quartiles)

1 D <- Arrests

2

3 quantile(D$age)

> 0% 25% 50% 75% 100%
12 18 21 27 66



1 quantile(D$age , seq(0,1,by=.2)) #quintile

> 0% 20% 40% 60% 80% 100%
12 17 20 23 30 66

Source: https://stackoverflow.com/questions/26266246/ggplot2-stat-function-can-we-use-the-generated-y-values-
on-other-layers/26280013



The quantile of a probability distribution

Let f be a prob. density function for a R.V. X .

I Given α ∈ [0, 1], what is x such that P(X ≤ x) = α?

I By definition:

P(X ≤ x) = F (x) =

∫ x

−∞
f (u)du = α.

Example: X ∼ Exp(1) and α = 0.3, find x .
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Data Analysis

I 1st step: Data-Table (+ (statistic) summary of data)

I 2nd step: Visualisation with the aim of:

1. Identifying the most common values (for each variable)
2. Determining the amount of variability (for each variable)
3. Recognising unusual observations.
4. Exploring trends in the data.
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Visualization of Discrete Data: Bar chart
Visualization for factor variables
(Nominal factor):

1 barplot(table(D$sex), main=’Arrests ’, ylim=c

(0 ,6000), axis.lty=1, col=c("Pink", "Maroon")

)



Visualization of Discrete Data: Bar chart
Barplot for Ordinal factor:

1 barplot(table(D$year), main=’Arrests ’, axis.lty

=1, col= "Maroon")

What will this code produce?
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Visualization of Discrete Data: Pie chart

1 slices <- table(D$checks)

2 pie(slices , labels = rownames(slices), main = "

Pie Chart of Previous Arrests")



Visualization of ”Continuous” Data: Histogram

Continuous analogue of bar plot
Idea:

I Divide the range of a continuous variable into interval-bins

I Plot the associated frequencies for each bin.



1 D_c <- Duncan # data set in carData - library

2

3 #left image:

4 hist(D_c$income , breaks = seq (0 ,100 ,20), col="

DarkSalmon", main = "Histogram of Income",

xlab = "Income", ylab = "count")

How do you have to change the R-code to get the image on the
right?



R-colors



Cumulative Frequency Plot

Empirical Cumulative Distribution Function (ECDF):

F̂ (x) =
1

m

m∑
i=1

1{xi≤x},

where 1{·} is the indicator function.



1 D_c <- Duncan

2 #left image:

3 plot.ecdf(D_c$income , xlab = ’income ’)

4

5 #right image:

6 install.packages("DescTools")

7 library(DescTools)

8 PlotECDF(D_c$income , seq (0 ,100 ,10), xlab = ’

income ’)



Box Plot

Describes:

I centre of the data,

I spread of the data,

I departure from symmetry,

I identification of outliers of the data



Box Plot

1 D <- Arrests

2 boxplot(D$age , ylab = "age")



Scatter Plot - Visualization of relations between variables

Idea:
Plot the observations in the x and y diagram
−→ Relation between x and y becomes apparent

Figure: Scatter plot of two variables x and y .



1 D_c <- Duncan

2 plot(D_c$income , D_c$prestige , pch=16,xlab=’

income ’, ylab = ’prestige ’)



Mixing variable types

To get the relation between two variables (“conditioned”) one the
value of one variable, we can use boxplots.

Figure: Box plot by category.



1 D <- Arrests

2 boxplot(age~checks , data = D, xlab=’checks ’,

ylab=’age’)



1 install.packages("ggplot2")

2 library(ggplot2)

3 ggplot(D, aes(x=checks , y=age , color=factor(

checks))) + geom_boxplot ()



QQ plots
Plots the quantiles of the first data set against the quantiles of the
second data set.
Idea:
I Calculate quantiles of the dataset for x .
I Calculate quantiles of the dataset for y .
I Plot quantiles of x against quantiles of y .

=⇒ If the line is on the 45-degree reference line, the two sets come
from a population with the same distribution.



1 D_c <- Duncan

2 qqplot(D_c$income , D_c$prestige , xlab=’income ’,

ylab=’prestige ’, pch =16)

3 abline(0,1,col=’red’)



Often QQ-Plots are used to compare sample data to the
Normal Distribution.
Stat2201 height distribution:



1 library(xlsx)

2 D_Stat2201 <- read.xlsx("Height_Weight_STAT2201.

xlsx", 1)

3 qqnorm(D_Stat2201$Height)

4 abline (173,10,col=’red’)



1 qqplot(D_Stat2201$Height , D_Stat2201$Weight , pch

=16)

2 abline (-195,1.5,col=’red’)



How do you interpret the previous qq plot?



QUIZ - TIME!



*

Your First Data Analysis

1 library(carData)

2 D_Q <- Depredations #Wolf depredation in 1973

3 head(Depredations)

longitude latitude number early late
1 -94.5 46.1 1 0 1
2 -93.0 46.6 2 0 2
3 -94.6 48.5 1 1 0
4 -92.9 46.6 2 0 2
5 -95.9 48.8 1 0 1
6 -92.7 47.1 1 0 1



a) What would be the very first step if someone gives you a
dataset?

b) How do you determine the number of observations?

c) Which of the variables are continuous which ones are factors?

d) If you want to investigate the distribution of the latitude with
respect to number of depredations, what type of plot (and
what R-Code) would you use?

e) What variables do you suspect to be related and how would
you test this?

f) Can you think of some other questions you would like to
answer with that data set?



Review Chapter 6: Data Description

I Summary Statistics

a) Sample-Mean,
b) Sample-Variance,
c) Sample-Covariance & Sample-Correlation,
d) Range of Data, Minimum, Maximum,
e) Median,
f) P-quantiles.

I Visualization:

a) Bar-Plot (factor variable),
b) Pie-Plot (factor variable),
c) Histogram (continuous variable),
d) ECDF-Plot,
e) Box-Plot,
f) Scatter-Plot (relation of two variables),
g) QQ-Plot.



Chapter 7–9

I Statistical Inference

I Central Limit Theorem

I Confidence Intervals

I Hypothesis Testing



Statistical inference

Statistical Inference is the process of forming judgements about
the parameters.

Assumptions:

I Assume that data X1, . . . ,Xn is drawn randomly from some
unknown distribution (identically distributed).

I Assume that the data is independent

longrightarrow Xi are i.i.d. (independent and identically
distributed), i.e.,

1. Xi ∼ G for all 1 ≤ i ≤ n
2. Xi s are independent



A statistic

A statistic is any function of the observations in a random sample.

−→ A statistic is itself a R.V.

Examples:

I g(X1,X2, . . . ,Xn) = X = X1+X2+···+Xn
n = Sample mean

I g(X1,X2, . . . ,Xn) = max{X1,X2, . . . ,Xn}

I Sample variance and sample standard deviation

I Sample quantiles besides the median, (quartiles and
percentiles)



A statistic

I The probability distribution of a statistic is called the
sampling distribution.

I A point estimate of some population parameter θ is a single
numerical value θ̂ of a statistic Θ̂.

I The statistic Θ̂ is called the point estimator.

Example:
Sample Mean = X = estimator of the population mean, µ.



Normal Distribution - Recap

X ∼ N(µ, σ2) then pdf is

f (x) =
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σ
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, x ∈ R.

I E[X ] = µ and Var(X ) = σ2

I If µ = 0 and σ = 1 then

f (x) =
1√
2π

e−
1
2
x2
, x ∈ R,

= standard normal distribution

I X−µ
σ ∼ N(0, 1) = standardization

I X = µ+ σZ , Z ∼ N(0, 1)



Central Limit Theorem (for sample means)

If X1,X2, . . . ,Xn is a random sample of size n taken from a
population with mean µ and finite variance σ2,then

lim
n→∞

X̄ − µ
σ√
n

= Z ∼ N(0, 1)

where X̄ is the sample mean. Equivalently,

P

(
X̄ − µ

σ√
n

≤ x

)
= Φ(x)

Regardless of Xi ’s distribution, the sum behaves (approxi-
mately) as the Gaussian random variable!



Central Limit Theorem (for sample means)

X̄
n→∞
≈ N

(
µ,
σ2

n

)

Sn =
∑n

i=1 Xn is then distribution

Sn
n→∞
≈ N(nµ, nσ2)



Xi ∼ Exp(0.5) (i.i.d.) → Sk =
∑k

i=1 Xi

1 M <- matrix (0 ,50 ,1000)

2 M[1,] <- rexp (1000 , lambda)

3 for (i in 2:50){

4 M[i,] <- M[i-1,] + rexp (1000 , 0.5)

5 }



1 hist(M[3,], main = ’pdf of S3’, xlab=’’, ylab =

’’)

2 hist(M[40,], main = ’pdf of S40’, xlab=’’, ylab

= ’’)



The standard error of X

I The standard error of X is given by σ√
n

.

I Note that In most practical situations σ is not known but
rather estimated.

I The estimated standard error (SE) is:
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Example:

For a temperature of 100◦F and 550 watts, the following
measurements of thermal conductivity were obtained:

41.60 41.48 42.34 41.95 41.86
42.18 41.72 42.26 41.81 42.04

→ sample mean is 41.924

→ estimated standard error is sample standard deviation s divided
by
√

10, here 0.284√
10

= 0.0898



Confidence Interval

confidence interval for µ (the real mean):

l ≤ µ ≤ u,

I Let X1, . . . ,Xn be collected data

I Endpoints are values of random variables L = g1(X1, . . . ,Xn)
and U = g2(X1, . . . ,Xn) such that

P(L(X) ≤ µ ≤ U(X)) = 1− α, α ∈ (0, 1).

−→ 1− α is called the confidence level.

((l , u) is the 100 · (1− α) % confidence interval.)



Confidence Interval for Mean

Let Xi be i.i.d., then:

I Recall

X ∼ N

(
µ,
σ2

n

)
.

I That is, for some positive scalar value z1−α/2, we have
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