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Descriptive Statistics

» Visualisation of the data.

» Analysis and presentation of characteristics of the data.
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Data types

Possible data types:

1. Continuous quantitative data — values in continuous range
(height, width, length, temperature, humidity, volume, area,
and price)

2. Discrete qualitative data (factor / categorical variable) —
values in discrete range (number of family members, gender
(male or female), count of objects).

Discrete Sub-types:
» Nominal factors = variables without order, such as males and
females.
» Ordinal factors = variable with a certain order, such as age
group.
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Data configurations

» Each configuration will consist of continuous and discrete
(ordinal and nominal) variables.
» Major configuration types:
» A single sample configuration consists of m scalars:
D= {Xlax2a"'aXm}'
Nr of fisherman per day; m =365 and x; = 0,1, .. ..

» Two (or more) sets of samples:
D= { {xll,...,x,ﬁh}, {xlz,...,xgh},...,{X{‘,...,x,’;k} }

Nr of fisherman per day in k different regions.

» Data tuples: D= {(X1’1,X1’2), (X2’1,X2’2), cee, (Xm,17 Xm’g)}.
x;.1 = Nr of fisherman at ith day, x; > is the number of fishing
nets used at day i.

» Generalization of tuples to vectors:

D ={(x1- - xn) - (Xm1s - Xmn)}

x;.1 = Nr of fisherman at ith day, x;» is the number of fishing
nets used at day i, x; 3 = Sea-Surface temperature at day i,. ..



1. Data tables

The table rows represent observed measurements for independent
variables (columns).

Observ.

variable 1

variable 2

variable /

variable n

1
2




-

N~ o o B~ W N

library (carData)
D <- Arrests
tail (D)

#or alterantive:
library(data.table)
print (data.table (D))

released colour year age sex employed citizen checks
5221 Yes White 2002 22 Male Yes Yes (%]
5222 Yes White 2000 17 Male Yes Yes (%]
5223 Yes White 2000 21 Female Yes Yes 0
5224 Yes Black 1999 21 Female Yes Yes 1
5225 No Black 1998 24 Male Yes Yes 4
5226 Yes White 1999 16 Male Yes Yes 3

Figure: Data on police arrests in Toronto for possession of marijuana.




Data summarization

A statistic is a numerical quantity, such as the proportion, that is
computed from a sample x1, ..., xpn.

-

library (dplyr)
D1 <- D %>% group_by(sex) %>) summarize (Count_

N

Arrests = n(), Proportion = Count_Arrests/
nrow (D))
3| D1
sex Count_Arrests Proportion
<fct> <int> <dbl>
1 Female 443 0.0848

2 Male 4783 0.915



Data summarization

Study a correlation between the two factor variables using the so
called contingency table:

1/D2 <- D %> mutate(sex = ifelse(sex==
,1,0), employed = ifelse(employed ==
,1,0)) %>%

2 select (sex, employed,age, year)

IS

round (cor (D2), digits = 3)

sex employed age  year
sex 1.000 -0.039 -0.011 -0.020
employed -0.039 1.000 -0.117 0.030
age -0.011 -0.117 1.000 -0.005

year -0.020 0.030 -0.005 1.000
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Summary Statistics = tool for an exploration of a variable.
Given a data vector of numbers x = (x1,. .., Xp), we have:

> Sample mean:

n
_ 1
X = — E Xj.
n <
i=1

D <- Arrests
mean (D$age)
> 23.84654

A W N R

o

sum(D$age) /nrow (D)
> 23.84654

~
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Describing quantitative data

> Range of data:

range = max x; — min Xx;.
1<i<n 1<i<n
» The order statistics.
First, sort the data to obtain X1) < x@2) < - < Xy and
observe the following.
1. The minimum: Xxy).
2. The maximum: X().

3. The median x = “middle” of data.
(order the data: x; < xp < -+ < x,):

X(41) if nis odd,

2

l . .
5 (X(g) +x(%1)> if nis even.



D <- Arrests

R <- max(D$age) - min(D$age)

> 54

Min_age <-
> 12

Max_age <-
> 66

Med_age <-
> 21

min(D$age)

max (D$age)

median (D$age)




» Sample Variance (data - spread):
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» Sample Variance (data - spread):

1
2 _ 22
S_n—lg (xi —X)7,

where X is the sample mean.

Sample Standard Deviation = s = \/s2

» Sample Correlation Coefficient:

doim (i =%) (yi —Y)

TS =% S -y
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D <- Arrests

Sample_Var <- var(D$age)
> 69.15807

mean_age <- mean(D$age)

D3 <- D %>% mutate(Diff = age-mean_age, Diff_squ
= Diff*Diff)

Sample_Var <- sum(D3$Diff_squ)/(nrow(D3)-1)

> 69.15807

sd (Sampel _Var)
> 8.316133

Sample_STD <- sqrt(Sample_Var)
> 8.316133
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10
11

12
13

D <- Arrests
D4 <- D %>% mutate(sex = ifelse(sex==
,1,0))

Sample_cor <- cor(D4%age, D4$sex)
> -0.01148502

mean_age <- mean(D4$age)

mean_sex <- mean (D4$sex)

D5 <- D4 %>% mutate( Num = (age-mean_age)*(sex-
mean_sex), Denoml = (age-mean_age)**2, Denom?2
= (sex-mean_sex)**2)

Sample_cor <- sum(D5$%$Num)/sqrt (sum(D5$Denoml)*
sum (D5$Denom?2))
> -0.01148502




Describing quantitative data

> p-quantile (0 < p < 1)
= zsuch that F(z) =P(X <z)=p

Common values: 0.25, 0.5, 0.75 quantiles (=25, 50, and 75
percentiles /first, second, and third quartiles)

1|D <- Arrests

w

quantile (D$age)

> 0% 25% 50% 75% 100%
12 18 21 27 66



—

quantile(D$age, seq(0,1,by=.2)) #quintile

> 0% 20% 40% 60% 80% 100%
12 17 20 23 30 66

auine [l sotom [l sccons [l e Ml o 1o

Source: https://stackoverflow.com/questions /26266246 /ggplot2-stat-function-can-we-use-the-generated-y-values-
on-other-layers /26280013
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The quantile of a probability distribution

Let f be a prob. density function for a R.V. X.
» Given « € [0, 1], what is x such that P(X < x) = a?

» By definition:

P(XSX):F(X):/_X f(u)du = a.

Example: X ~ Exp(1) and a = 0.3, find x.
N X Al R

"’AQ A “X |a - ¥
034 s *S@ kT e |
g 0
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Data Analysis

» 1st step: Data-Table (4 (statistic) summary of data)
» 2nd step: Visualisation with the aim of:

1. Identifying the most common values (for each variable)
2. Determining the amount of variability (for each variable)
3. Recognising unusual observations.



Data Analysis

» 1st step: Data-Table (4 (statistic) summary of data)

» 2nd step: Visualisation with the aim of:

o=

Identifying the most common values (for each variable)
Determining the amount of variability (for each variable)
Recognising unusual observations.

Exploring trends in the data.



Visualization of Discrete Data: Bar chart

Visualization for factor variables
(Nominal factor):

-

barplot (table(D$sex), main=’Arrests’, ylim=c
(0,6000), axis.lty=1, col=c("Pink", "Maroon')
)

Arrests

2000 5000

1000

0
L

Female Male



Visualization of Discrete Data: Bar chart
Barplot for Ordinal factor:

-

barplot (table (D$year), main=’Arrests’, axis.lty
=1, col= "Maroon")

What will this code produce?



Visualization of Discrete Data: Bar chart
Barplot for Ordinal factor:

—

barplot (table (D$year), main=’Arrests’, axis.lty
=1, col= "Maroon")

What will this code produce?

Arrests

1200
I I 1 1

200 400 800 800

1997 1998 1999 2000 2001 2002

1)
L




Visualization of Discrete Data: Pie chart

-

slices <- table(D$checks)
pie(slices, labels = rownames(slices), main =

)

N

Pie Chart of Previous Arrests

¥
S



Visualization of " Continuous” Data: Histogram

Continuous analogue of bar plot
Idea:

> Divide the range of a continuous variable into interval-bins

P> Plot the associated frequencies for each bin.

Histogram of Income Histogram of Income

count
6
|
count
4
Il

0 20 40 60 80 100 0 20 40 60 80 100



D_c <- Duncan # data set in carData - library

#left image:

hist(D_c$income, breaks = seq(0,100,20), col="
DarkSalmon", main = "Histogram of|\Income",
xlab = "Income'", ylab = "count')

How do you have to change the R-code to

Cl'\au\y 20 Hﬁ

t the image on the
right?



R-colors

white blue antiqguewhite  antiguewhite1  antiquewhite2
antiqguewhite3 _ aguamarine  aguamarinel  aguamarine2
azure azurel azure2

azured - beige bisque bisque1
bisiuez Wea =ﬁblanchedalmond
M cocouei casemuez
cadetbluel cadetblus2
chartreuse chartreuse1 chartreuse2

cornsilk comsilk1 comsilk2
cornsilk3 _ cyan c.ﬁm ﬁrﬂ
&W denrod1 darkgoidenrod2 _!=

darlwlwei reent darlwllﬁenz duﬂuﬁmﬂn&

darkseagreen1 darkseagreen2 darkseagreen3.
darkslat 1 darkslatﬁﬁz



Cumulative Frequency Plot

Empirical Cumulative Distribution Function (ECDF):

1 m
F(X) = E 2; 1{x,-§x}a
1=
where 1{.} is the indicator function.

10
a8
a8
04

a2



D_c <- Duncan

plot.ecdf (D_c$income,

install.packages(

library(DescTools)

PlotECDF(D_c$income,
)

xlab =

seq(0,100,10), xlab =

ecdf{x)

08 1.0

0.6

Fnix)

02

0.0

100 +

75 4

50

25 4

00 1

income

T T T T
20 40 60 80

income




Box Plot

Describes:
> centre of the data,
> spread of the data,
» departure from symmetry,

» identification of outliers of the data

o1 median Q3
N/
e I I |
™ IQR ”

Q1-1.5xIQR Q3 + 1.5x QR

!

QOuitlier



Box Plot

N

D <- Arrests

boxplot (D$age,

= )

age

20 30 40 50 60

10

|
s




Scatter Plot - Visualization of relations between variables

Idea:
Plot the observations in the x and y diagram
— Relation between x and y becomes apparent

Figure: Scatter plot of two variables x and y.



N

D_c <- Duncan

plot(D_c$income, D_c$prestige, pch=16,xlab=
, ylab = )
- N :.q.o
_%8_ o$.
Eg, P ..o .
o L= \ \ T T
20 40 60 80

income




Mixing variable types

To get the relation between two variables ( “conditioned”) one the
value of one variable, we can use boxplots.

i+i§%

Figure: Box plot by category.

B oW o8 8 5 &

@

=



Arrests

xlab=

:D’

data

ylab

1D <-

2| boxplot (age~“checks,

checks



-

install.packages("ggplot2")

library(ggplot2)

ggplot (D, aes(x=checks, y=age, color=factor (
checks))) + geom_boxplot ()

[

60 -

50- ¥ : : factor(checks)

: ,
; g
:
40- =F

age

30- =H




QQ plots

Plots the quantiles of the first data set against the quantiles of the
second data set.
Idea:

» Calculate quantiles of the dataset for x.

» Calculate quantiles of the dataset for y.

» Plot quantiles of x against quantiles of y.
= If the line is on the 45-degree reference line, the two sets come
from a population with the same distribution.

Probability Plot

s

-}

o
o]

—
&

Ordered Values
"
=]

=
=)

w
.

-3 -2 -1 0 1 2 3
Thearetical guantiles



N

D_c <- Duncan

qqplot (D_c$income, D_c$prestige, xlab=
ylab= , pch=16)

abline(0,1,col= )

prestige

income




Often QQ-Plots are used to compare sample data to the
Normal Distribution.
Stat2201 height distribution:

count
4
!

I T T T 1
140 160 180 200 220

height



-

s> W

library (xlsx)

D_Stat2201 <- read.xlsx(

D)

qqnorm (D_Stat2201$Height)

abline (173,10, col=

)

Normal Q-Q Plot

Sample Quantiles

Theoretical Quantiles




-

qqplot (D_Stat2201$Height, D_Stat2201$Weight, pch

=16)
abline (-195,1.5,col="red’)

D_Stat2201$Weight
40 50 80 7O B8O 90 100

T T T T
160 170 180 190

D_Stat2201$Height

Jo COW\L()(’O':"
JMQ Sawme (‘)A%



How do you interpret the previous qq plot?

12

10

count
4
]
count

~
o
~ -
. .
I T T T 1 T T T T 1T T 1
160 170 180 190 200 30 40 50 ©0 70 80 90

Height Weight



QUIZ - TIME!



-

w

Your First Data Analysis

library(carData)
D_Q <- Depredations
head (Depredations)

longitude latitude
1 -94.5 46.1
2 -93.0 46.6
3 -94.6 48.5
4 -92.9 46.6
5 -95.9 48.8
6 -092.7 47.1

number
1

R RN RN

early
0

O O O+ O

late
1

= = N O DN




What would be the very first step if someone gives you a
dataset?

How do you determine the number of observations?
Which of the variables are continuous which ones are factors?

If you want to investigate the distribution of the latitude with
respect to number of depredations, what type of plot (and
what R-Code) would you use?

What variables do you suspect to be related and how would
you test this?

Can you think of some other questions you would like to
answer with that data set?



Review Chapter 6: Data Description

» Summary Statistics

a) Sample-Mean,
) Sample-Variance,
c) Sample-Covariance & Sample-Correlation,
d) Range of Data, Minimum, Maximum,
e) Median,
f) P-quantiles.

» Visualization:
a) Bar-Plot (factor variable),

) Pie-Plot (factor variable),

c) Histogram (continuous variable),

d) ECDF-Plot,

e) Box-Plot,

f) Scatter-Plot (relation of two variables),
)

QQ-Plot.



Chapter 79

» Statistical Inference
» Central Limit Theorem
» Confidence Intervals

» Hypothesis Testing



Statistical inference

Assumptions:

» Assume that data Xi, ..., X, is drawn randomly from some
unknown distribution (identically distributed).

> Assume that the data is independent

longrightarrow X; are i.i.d. (independent and identically
distributed), i.e.,

1. Xi~Gforall1<i<n
2. Xjs are independent



A statistic

A statistic is any function of the observations in a random sample.
— A statistic is itself a R.V.

Examples:
> g(X1, Xo,..., X)) =X = w = Sample mean

> g(X]_,XQ, RN ,Xn) = max{Xl,Xz, N ,Xn}
» Sample variance and sample standard deviation

» Sample quantiles besides the median, (quartiles and
percentiles)



A statistic

> The probability distribution of a statistic is called the
sampling distribution.

> A point estimate of some populatlon parameter 0 is a single
numerical value § of a statistic ©.

> The statistic © is called the point estimator.

Example:
Sample Mean = X = estimator of the population mean, pu.



Normal Distribution - Recap
X ~ N(u,0?) then pdf is

1 1 x—p)2
f(x)= 7e_§(7) , xeR.
() oV2m
» E[X] = i and Var(X) = o2
» If u=0and o =1 then
1
f(x) = —e 2, x€R,

V2r

= standard normal distribution
» X N(0,1) = standardization

(e

» X=u+ocZ, Z~N(0,1)



Central Limit Theorem (for sample means)

If X1,X5,...,X, is a random sample of size n taken from a

population with mean p and finite variance o2, then

X—p
o

Vn

where X is the sample mean. Equivalently,

P()_(;'M§X> = d(x)

lim
n—oo

= Z ~ N(0,1)

Vi

Regardless of X;'s distribution, the sum behaves (approxi-
mately) as the Gaussian random variable!




Central Limit Theorem (for sample means)

Sp=>.71_1 Xy is then distribution

n—oo

S = N(np, no?)



Xi ~ Exp(0.5) (i.i.d.) = S =K. X;

(S I N U SR

M <- matrix(0,50,1000)
M[1,] <- rexp(1000,lambda)
for (i in 2:50){
M[i,] <- M[i-1,] + rexp (1000, 0.5)
}

pdf of §1

300
I

200
1




-

N

hist(M[3,], main = , xlab=’’, ylab =
)
hist (M[40,], main = , xlab=’’, ylab
= )

pdf of §3 pdf of S40

o
— S o —
~

150 250
1 ]
150
|

100
|

50

T T T T 1 T T T T T T 1
0 5 10 15 20 50 60 70 80 90 100 110



The standard error of X

» The standard error of X is given by %

> Note that In most practical situations ¢ is not known but
rather estimated.

» The estimated standard error (SE) is:

Py Xi2 — nx?
n(n—1)




Example:

For a temperature of 100°F and 550 watts, the following
measurements of thermal conductivity were obtained:

41.60 41.48 4234 41.95 41.86
42.18 41.72 4226 41.81 42.04

— sample mean is 41.924

— estimated standard error is sample standard deviation s divided

0.284 __
by /10, here 225 =0.0898



Confidence Interval

confidence interval for p (the real mean):

I <p<u,

> Let Xi,..., X, be collected data

» Endpoints are values of random variables L = g1 (X1, ...

and U = g»(Xi,...,X,) such that

P(L(X)<pu<UX)=1-a, ac(0,1).

—— 1 — « is called the confidence level.

((/,u) is the 100 - (1 — ) % confidence interval.)



Confidence Interval for Mean

Let X; be i.i.d., then:
2
X ~N (u, J> .
n

> Recall
» That is, for some positive scalar value z;_, />, we have

_ o X —
P (X < M+Zl—a/2ﬁ> = P( L,U < Zl—a/2)
Vn
= (D(Zl—a/2)




