
STAT3004 — Project 1
Matthew Low

May 27, 2020

The code snippets for this assignment were done in Python 3.8.

Question 1
Equation (4.1.4) presents the expected numbers in the Greenwood model.

E[Xt | X0 = x0] = αtx0, E[Yt | X0 = x0] = αt−1(1− α)x0. (4.1.4)

1a Derive these equations.

We first note that from the text that

P((X, Y )t+1 = (x, y)t+1 | (X, Y )t = (x, y)t) =
(
xt

xt+1

)
αxt+1(1− α)xt−xt+1 .

We identify that this probability is the probability mass function of a binomial distribution, with
xt := n, xt+1 := k and α := p. This means that we can utilise the expectation

E[Xt+1 | Xt] = np = αXt.

Note that E[Xt+1 | Xt] ≡ E[Xt | Xt−1]. We can apply another expected value to both sides to obtain

E[E[Xt | Xt−1]] = E[Xt] = αE[Xt−1].

This can be applied iteratively/recursively to obtain

E[Xt] = αtE[X0] = αtx0,

therefore deriving the first part of this equation. Recall that Xt denotes the number of susceptibles
at time t, and Yt denotes the number of infectives at time t. Since Xt + Yt = Xt−1, we can rearrange
to obtain Yt = Xt−1 −Xt. This means that we have

E[Yt | X0 = x0] = E[Xt−1 −Xt | X0 = x0] = E[Xt−1 | X0 = x0]− E[Xt | X0 = x0]
= αt−1x0 − αtx0 = αt−1(1− α)x0

1b Assume x0 = 6 and α = 0.8. Then plot these expected values for some suitable time horizon.
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import tikzplotlib

plt.rcParams.update({
"font.family": "serif",
"text.usetex": True,
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})

# Set up parameters
alpha = 0.8
x0 = 6

# Set up grid
t = np.linspace(0, 20, 20)

# Plot expected values using step since discrete time values
plt.scatter(t, (alpha ** t) * x0, \

label=’$\mathbf E[X_t \mid X_0 = x_0]$’, color=’g’)
plt.scatter(t, (alpha ** (t-1)) * (1-alpha) * x0, \

label=’$\mathbf E[Y_t \mid X_0 = x_0]$’, color=’b’)

plt.xlabel(’Time ($t$)’)
plt.ylabel(’Expected value’)
plt.title("Expected numbers in the Greenwood model")
plt.legend()
tikzplotlib.save("assignments/stat3004-stochastic/tikz/1b.tikz", \

axis_width=’12cm’, axis_height=’6cm’)
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Question 2
Equation (4.2.1) presents a recursion for the expected number of susceptibles and infected in the
Reed-Frost model.

E[(X, Y )t+1 | (X, Y )t = (x, y)t] = (xtα
yt , xt(1− αyt)). (4.2.1)

2a Derive these equations.

We derive the X and Y components of this expectation independent. First, we note that Xt+1 ∼
Bin(Xt, α

Yt). This gives us the conventional binomial expectation

E[Xt+1 | Xt = xt] = np = xtα
yt .

For the Y component, we first note that Yt+1 = Xt −Xt+1. We can then split up the expectations
as follows:

E[Yt+1 | Xt = xt, Yt = yt] = E[Xt | Xt = xt]− E[Xt+1 | Xt = xt]
= E[Xt | Xt = xt]− xtα

yt .
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We now prove E[Xt | Xt = xt] = xt. Using the definition of conditional expectation, we have

E[Xt | Xt] =
∑
xt

xtP(Xt = xt | Xt = xt) =
∑
xt

xt
P(Xt = xt ∩Xt = xt)

P(Xt = xt)
=
∑
xt

xt
P(Xt = xt)
P(Xt = xt)

= xt.

Returning back to E[Yt+1 | Xtxt, Yt = yt], we have

E[Yt+1 | Xtxt, Yt = yt] = E[Xt | Xt = xt]− xtα
yt = xt − xtα

yt = xt(1− αyt) .

Combining E[Xt+1 | Xt = xt, Yt = yt] and E[Yt+1 | Xt = xt, Yt = yt] we obtain our desired result

E[(X, Y )t+1 | (X, Y )t = (x, y)t] = (xtα
yt , xt(1− αyt)).

2b Reproduce Figure 4.2 and also plot the trajectory of expected values, jointly on the (X, Y ) plane in a
similar manner to Figure 10.1 of [SWJ-10] (there, the plot is for a predator-prey model).

Note From now on, imports and other “boilerplate” Python code will be omitted from snippets to save
space.
# Set up parameters
alpha = 0.98
N, I = 100, 1

EXt = lambda x, y: x * (alpha ** y)
EYt = lambda x, y: x * (1 - alpha ** y)

coordinates_x = []
coordinates_y = []
# Set starting values
x, y = N, I
t = np.linspace(0, 15, 15)

# Iterate
for i in range(15):

x, y = (EXt(x, y), EYt(x,y))
print(x,y)
coordinates_x.append(x)
coordinates_y.append(y)

plt.subplot(131)
plt.xlim(0, 100)
plt.ylim(0, 100)
plt.title("Trajectory of $\mathbf E$-values")
plt.scatter(coordinates_x, coordinates_y, color=’g’)
plt.plot(coordinates_x, coordinates_y, ’g--’)
plt.xlabel(’$\mathbf E[X_{t+1} \mid (X,Y)_t = (x,y)_t]$’)
plt.ylabel(’$\mathbf E[Y_{t+1} \mid (X,Y)_t = (x,y)_t]$’)

plt.subplot(132)
plt.title(’Susceptibles’)
plt.scatter(t, coordinates_x, color=’g’)
plt.xlabel(’Time ($t$)’)
plt.ylabel(’$\mathbf E[X_{t+1} \mid (X,Y)_t = (x,y)_t]$’)

plt.subplot(133)
plt.title(’Infectives’)
plt.scatter(t, coordinates_y, color=’g’)
plt.xlabel(’Time ($t$)’)
plt.ylabel(’$\mathbf E[Y_{t+1} \mid (X,Y)_t = (x,y)_t]$’)
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tikzplotlib.save("assignments/stat3004-stochastic/tikz/2b.tikz", \
axis_width=’5cm’, axis_height=’4cm’)
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Question 3
Consider the Markov chain {Xt, t = 0, 1, 2 . . .} defined by X0 = x0 and the transition probability
matrix as in equation (4.1.5) for the Greenwood model. The state space is {0, 1, 2, . . . , x0}.

For reference:
E[Xt | X0 = x0] = αtx0, E[Yt | X0 = x0] = αt−1(1− α)x0. (4.1.4)

P =



1 . . . . . .
1− α α . . . . .

(1− α)2 2(1− α)α α2 . . . .
... ... ... . . . ...

(1− a)x0 x0(1− α)x0−1α
(

x0
2

)
(1− α)x0−2α2 . . . αx0

 (4.1.5)

3a Plot a heat-map of this transition probability matrix for x0 = 5, x0 = 10 and x0 = 20 and some
α ∈ (0.5, 0.9) of your choice.

For this question, I chose the α values α ∈ {0.55, 0.7, 0.85}. I did a grid of subplots, with rows
representing different α and columns representing different x0.
# Set up parameters
alphas = [0.55, 0.7, 0.85]
x0s = [5, 10, 20]

# First subplot
index = 331
plt.suptitle("Transition matrices for Greenwood model")

# Generate matrices for each specified alpha and size
for alpha_num, alpha in enumerate(alphas):

for x0_num, x0 in enumerate(x0s):
# Generate matrix
matrix = np.zeros((x0 + 1, x0 + 1))
for i in range(x0 + 1):

for j in range(x0 + 1):
if i < j:

continue
elif i == j:

matrix[i,j] = alpha ** i
else:
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matrix[i,j] = math.comb(i, j) \
* (1 - alpha) ** (i - j) \
* (alpha) ** j

plt.subplot(index)
# Using green colourmap, increasing from 0 (white) to 1 (green)
plt.imshow(matrix, cmap=’Greens’, interpolation=’nearest’)
plt.xticks([], [])
plt.yticks([], [])
index += 1
# Some code to print out row and column labels
if alpha_num == len(alphas) - 1:

plt.xlabel(f’$x_0 = {x0s[x0_num]}$’)
if x0_num == 0:

plt.ylabel(f’$\\alpha = {alphas[alpha_num]}$’)

tikzplotlib.save("assignments/stat3004-stochastic/tikz/3a.tikz", \
axis_width=’4.5cm’, axis_height=’4.5cm’)
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3b Determine the communicating classes of this Markov chain. How many are there? Which are recur-
rent? Which are transient? Observe that for any state in the state space {0, 1, 2, . . . , x0}, it is only
ever possible to go down a state, but not up a state. For example, let us draw the probability matrix
in the case where x0 = 5 and α = 0.7. We can compute the numerical values of this transition matrix
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by running a modified version of the above code, to obtain

1 0 0 0 0 0
0.3 0.7 0 0 0 0
0.09 0.42 0.49 0 0 0
0.027 0.189 0.441 0.343 0 0
0.0081 0.0756 0.2646 0.4116 0.2401 0
0.00243 0.02835 0.1323 0.3087 0.36015 0.16807


.

Notice that this is a lower-triangular matrix. Drawing out this Markov chain gives us the following:

0

1

2

3

4

5

1

0.7

0.49

0.343

0.2401

0.16807
0.00243

0.0081

0.027

0.09

0.3

0.42

0.441

0.4116

0.36015

0.189

0.2646

0.3087

0.0756

0.1323

0.02835

We observe that no state i can at any point go to any state j such that j > i. Therefore, there is no
two-way communication between any states. As a result, the communication classes of this Markov
chain are

{0}, {1}, {2}, {3}, {4}, {5}

and in general for some x0, the communicating classes of the Markov chain are

{0}, {1}, {2}, . . . , {x0}

and as a result there are x0 + 1 communicating classes . Recall that a recurrent state is one which
you will keep coming back to, and a transient state is one that will eventually be left forever (in less
rigorous terms). As previously mentioned, you can only ever go down but never up, and therefore
the recurrent class is {0} , and the transient classes are {1}, {2}, . . . , {x0} .

3c The part of equation (4.1.4) for Xt, presenting the expected value, can be obtained in a much more
cumbersome way to what you did in 1a above. For this, take the power P t and compute e>x0+1P

tv,
where ex0+1 is the x0 +1 long unit vector (0, 0, . . . , 1)> and v is the vector (0, 1, 2, . . . , x0)>. Compute
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this numerically and see that the results numerically agree with those in the plot of 1b. Explain why
this holds.

The code to compute this numerically is as follows (with some code from previous plots omitted for
the sake of brevity):
for i in range(x0 + 1):

v[i] = i

# Generate numerical approximation eT * P^t * v
numX = np.zeros((20, 1))
for i in range(20):

numX[i] = e.T @ np.matrix(matrix) ** (i) @ v

# Plot on top of previous plot
plt.scatter(t, numX, color=’r’,\

label=’Num. approximation of $\mathbf E[X_t]$’)
plt.legend()
tikzplotlib.save("assignments/stat3004-stochastic/tikz/3c.tikz", \

axis_width=’12cm’, axis_height=’6cm’)
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We can explain the accuracy of this numerical approximation by performing the normal matrix
multiplication algorithm on our matrices one by one. Recall that for matrix multiplication, we work
our way through the rows on the left matrix and then work through the columns of the right matrix,
summing each column. In the case of a 1× n multiplied by an n× n matrix, it computes the sum of
each column, but since our 1× n matrix is zero everywhere except the last column, it just extracts
the last row of the right hand side matrix, giving us

e>x0+1P =
(
(1− α)x0 x0(1− α)x0−1α

(
x0
2

)
(1− α)x0−2α2 . . . αx0

)
We now have a new 1× n matrix, which we will multiply by the n× 1 matrix v (inner product) to
obtain a single value. Since v is just the ascending integers {0, 1, . . . , x0}, we obtain the sum

e>x0+1Pv =
x0∑

i=0
i

(
x0

i

)
(1− α)x0−iαi = αx0.

Extending this to the case where we have P t instead of just P , using a similar recursive argument
to question 1a, we obtain

e>x0+1P
tv = · · · = αtx0.

One can also observe that the left multiplication e>x0+1P
t gives the row vector corresponding to the

distribution after t states. Since the values of v correspond to the states in ascending order, the
inner product of e>x0+1P

t by v gives the expectation E[Xt | X0 = x0] = αtx0.
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3d Attempt to carry out a similar numerical computation for the expectation of Yt in equation (4.1.4)
and explain your method. To obtain our method, we use the above result that e>x0+1P

tv = αtx0 =
E[Xt | X0 = x0]. We can then also recall that

E[Yt | X0 = x0] = E[Xt−1 | X0 = x0]− E[Xt | X0 = x0]

With some algebra, we can obtain the formula

E[Yt | X0 = x0] = e>x0+1P
t−1v− e>x0+1P

tv
= e>x0+1P

t−1v− e>x0+1P
t−1Pv

= e>x0+1P
t−1(v− Pv) = e>x0+1P

t−1(I − P )v.

We can implement this numerical approximation below:
# Generate numerical approximation eT * P^(t-1) . (1-a) * v
numY = np.zeros((20, 1))
for i in range(20):

numY[i] = e.T @ np.matrix(matrix) ** (i-1) @ (np.eye(x0+1, x0+1) - np.matrix(
matrix)) @ v

# Plot on top of previous plot
plt.scatter(t, numY, color=’r’,\

label=’Num. approximation of $\mathbf E[Y_t]$’)
plt.legend()
tikzplotlib.save("assignments/stat3004-stochastic/tikz/3d.tikz", \

axis_width=’12cm’, axis_height=’6cm’)
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Question 4
Consider now the joint distribution of (W,T ) as described in subsection 4.1.1 (dealing with the Green-
wood model). Here, T is the first time in which there are no infectives and W is the number of
susceptibles that have been infected by that time. That is the random variables T and W describe the
“end of the infection”. The main aim is to know the probabilities

Γ(k, n | x0) = P((W,T ) = (k, n) | X0 = x0, Y0 > 0),

for k = 0, 1, . . . , x0 and n = 1, 2, . . .. These assume that at onset x0 family members are sick and
there is an infection in the household. For all of the numerical computations in this question, use
x0 = 6 and some fixed α ∈ (0.7, 0.9) of your choice.

Note For question 4 and 5, we choose x0 = 6, y0 = 1, α = 0.8.
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4a Explain equation (4.1.6). For reference, equation 4.1.6 is

pt
j ≡ P(Xt = j, Yt > 0) =

x0−(t−1)∑
i=j+1

pt−1
i pij (4.1.6)

To elucidate this formula a bit more, we can expand it to

pt
j = pt−1

j+1pj+1,j + pt−1
j+2pj+2,j + · · ·+ pt−1

x0−t+1px0−t+1,j;

that is, the probability of being in state j at time t is the probability of being in state j + 1 at time
t− 1 times pj+1,j. By definition, pij = P(Xt+1 = j | Xt = 1, Yt > 0) so we can interpret pj+1,j as the
probability of going down 1 state, pj+2,j as the probability of going down 2 states and so on.

Therefore, the above expression for pt
j is the probability of going down one state × the probability

of being at state j + 1, plus the probability of going down two states × the probability of being at
state j+ 2, and so on. In other words, the expression above is the sum of all arrows heading towards
state j, recursively. We note that since we have the requirement that Yt > 0, and Yt = Xt−1 −Xt,
we do not include the probability of staying in the same state.

4b Use the recursive relationship Γ(k, n | x0) = pn−1
x0−kα

x0−k to (numerically) compute P(W > 4). The
code for this computation is below:
x0 = 6
y0 = 1
alpha = 0.8

# Defined as p_{i, j} in EM-4
def prob(i, j):

return math.comb(i, j) * (1-alpha)**(i-j) * (alpha**j)

# Defined as p_j^t in EM-4
def p(j, t):

# print(j, t)
if t == 0:

return 1 if x0 == j else 0
result = 0
# print("Here")
for i in range(j+1, x0-(t-1)+1):

# print("Loop")
result += p(i, t-1) * prob(i, j)

return result

# P((W,T) = (k,n) | X0 = i, Y0 > 0) in EM-4
def pwt(k, n, i):

return p(i-k, n-1) * alpha**(i-k)

# Compute P((W,T) = (k,n)) for all n, then for all k > 4, then sum them all
sum_num = 0
for i in range(1, 100):

for j in range(5, 7):
sum_num += pwt(j, i, x0)

print(sum_num)

Running this code gives the result P(W > 4) ≈ 0.130298 .

4c Compare your numerical result to an estimate obtained by a Monte-Carlo simulation creating 106

repeated trajectories and using those to estimate P(W > 4). The code for this computation is
below:

9
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infected_nums = []
iterations = 10**6

for iteration in range(iterations):
x = 6
alpha = 0.8
# Set dummy value that isn’t 0
y = -1
# Number of infected so far
infected = 0

# Loop until y = 0 (no infected at current time t)
while y != 0:

new_x = np.random.binomial(x, alpha)
y = x - new_x
infected += y
x = new_x

infected_nums.append(infected)

# Monte-Carlo estimate of P(W>4) using list comprehensions
print(len([i for i in infected_nums if i > 4])/iterations)

On one sample run, this Monte Carlo estimate gives us P(W > 4) ≈ 0.13039 , within 3 decimal
places of the numerical computation in 4b above.

4d Attempt to reproduce the PGF computations in subsection 4.1.1 to then obtain the same numerical
result (this item is longer and slightly more challenging).

We note that to compute this numerical result from the joint PGF, we can compute

ΨW,T (ϕ, 1) ≡ ΨW (ϕ) = A′(I − P̄ (ϕ))−1QE.

which follows from a property of generating functions:

ΨW,T (ϕ, 1) = E[ϕW 1T ] = E[ϕW ] = ΨW (ϕ).

We also recall that to compute the PMF from the PGF, we apply

P(X = k) = Ψ(k)(0)
k! ,

where Ψ(k)(0) is the k-th derivative of Ψ at 0. We can notice from equation (4.1.14) in [1] that the
kth derivatives correspond to the coefficients of ϕ in expanded form:

A′(I − P̄ (ϕ))−1QE = (0, 0, 0, 1)(I − P̄ (ϕ))−1(1, α, α2, α3)>

ΨW (ϕ) = α3 + ϕ(3α4(1− α)) + ϕ2(3α2(1 + 2α2)(1− α)2)
+ ϕ3((1− α)3(1 + 3α + 3α2 + 6α3)).

To be continued...

Question 5
Consider the Markov chain for the Reed-Frost model with transition probability matrix as in (4.2.2).
For all the numerical computations in this question, use x0 = 6, some y0 of your choice, and some
fixed α ∈ (0.7, 0.9) of your choice (use the same α which you used for the previous question).
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5a What is the state space? As explained in the textbook [1],

Pij records the transition probabilities from Yt = i to Yt+1 = j, with values of Xt and Xt+1
indexing the rows and columns respectively, ranging from 0 to x0.

Since the full transition matrix consists of (x0 + 1) × (x0 + 1) block matrices, we have that x ∈
{0, . . . , x0} , X and y ∈ {0, . . . , x0} = X so we can take the state space to be the Cartesian product
X ×X = {0, . . . , x0} × {0, . . . , x0} = {(0, 0), (0, 1), . . . , (x0, x0 − 1), (x0, x0)} , where the first value
in each 2-tuple corresponds to the value of xt and the second corresponds to the value of yt.

5b Try to describe the communicating classes in a compact manner. If not possible, constrain to a small
fixed x0.

To help us understand the communicating classes a bit better, it is helpful to refer to the heat map
in section 5c. We note that, as previously mentioned, the transition probability matrix is assembled
from (x0 +1)×(x0 +1) submatrices of size x0 +1×x0 +1. Each row of submatrices corresponds to yt,
and each column of submatrices corresponds to yt+1. Each row of each submatrix corresponds to xt,
and each column of each submatrix corresponds to xt+1. Therefore, when looking at the heatmap,
we can make the following interpretation:

• The top left corner of each submatrix in the first column of submatrices is 1. That corresponds
to xt+1 = 0. Under the Reed-Frost model, we can only stay at 0 if we arrive at xt = 0 for some
t.
• In the first row of submatrices, we have the identity matrix as a submatrix followed by x0

submatrices of 0. This indicates that yt+1 = 0 and xt+1 = xt forever.
• The second row of each row of submatrices (except row 1 of submatrices) has two filled in

elements. The leftmost element in this row corresponds to when we remain in the current
state of xt+1 = xt, whereas the rightmost element in this row corresponds to when we move to
xt+1 = 0.
• For row n of each row of submatrices (except row 1 of submatrices), we have n filled in elements,

and moving right along the submatrices indicates how much we are decrementing xt+1 from xt.

Let us for instance examine the communication classes of x0 = 1. We first draw a diagram of the
possible transitions between states in this case. Note each state below is (xt, yt).

(1, 0) (1, 1) (1, 2)

(0, 2)(0, 1)(0, 0)

(2, 0) (2, 1) (2, 2)

We have the following results, which we can visually generalise to any x0:

• If yt = 0, then we stay in the same state;
• If xt = 0, then we move to xt+1 = yt+1 = 0.
• Otherwise, we can move to any of the states (x, y) = (0, y), (1, y − 1), ... all the way up to

(y, 0). This is due to the fact that yt = xt−1 − xt.

However, note that all of these tend towards the top or right hand side of this chain. We either go
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to the very left of the chain and recur in the state where y = 0, or go to the top of the chain and
transition to (x, y) = (0, 0). This means that we have (x0 + 1)× (x0 + 1) = (x0 + 1)2 communication
classes, as there is no two-way communication.

The communication classes are

{(0, 0)}, {(0, 1)}, . . . , {(0, x0 + 1)}, . . . , {(x0 + 1, x0 + 1)} .

The classes on the left, where y = 0, are recurrent, i.e. {(0, 0)}, {(1, 0)}, . . . , {(x0 + 1, 0)} , and the
rest of the classes are transient. In other words:

{(x, y)} =

recurrent y = 0,
transient y 6= 0.

5c Plot a heat-map similarly to 3a (you may want to use block-matrices in your software).
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Transition matrix for Reed-Frost model, x0 = 6, y0 = 1, α = 0.8

This plot was generated using the following code:
# Set up parameters
x0 = 6
y0 = 1
alpha = 0.8

# First subplot
plt.title("Transition matrix for Reed-Frost model, $x_0 = 6, y_0 = 1, \\alpha =

0.8$")

# Compute the Pij submatrix
def Pij(i, j):

# Corner cases
if i == 0 and j == 0:

return np.eye(x0 + 1, x0 + 1)
if i == 0:

return np.zeros((x0 + 1, x0 + 1))
else:

12
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result = np.zeros((x0 + 1, x0 + 1))
# Construct diagonal
for k in range(x0 + 1):

for l in range(x0 + 1):
if j + l == k:

result[k, l] = math.comb(k, l) * (alpha**(i*l)) * ((1-alpha**i
)**j)

return result

P = np.block([[Pij(i,j) for j in range(x0 + 1)] for i in range(x0 + 1)])

plt.imshow(P, cmap=’Greens’, interpolation=’nearest’)
plt.xticks([], [])
plt.yticks([], [])

tikzplotlib.save("assignments/stat3004-stochastic/tikz/5c.tikz", \
axis_width=’10cm’, axis_height=’10cm’)

5d Run a Monte-Carlo simulation to obtain an estimate for P(W > 4) similarly to 4c. How does the
result compare to 4c? Explain why. The code for the computation (which is very similar to 4c’s
code snippet) is below:
infected_nums = []
iterations = 10**6

for iteration in range(iterations):
x = 6
alpha = 0.8
y = 1
# Number of infected so far
infected = 0

# Loop until y = 0 (no infected at current time t)
while y != 0:

new_x = np.random.binomial(x, alpha ** y)
y = x - new_x
infected += y
x = new_x

infected_nums.append(infected)

# Monte-Carlo estimate of P(W>4) using list comprehensions
print(len([i for i in infected_nums if i > 4])/iterations)

Running this Monte Carlo estimate gives us P(W > 4) ≈ 0.256392 . The reason for the higher
probability of large number of infected susceptibles is because in the Reed-Frost model, an individual
susceptible at time t is still susceptible at time t+ 1 only if infectious contact is avoided, whereas in
the Greenwood model, the cause of infection is not related to the number of infectives. We can also
note that we have a probability of αYk instead of α for our binomial sample, increasing the value of
P(W > 4).
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Question 6

Executive Summary

We construct a model for COVID-19 spread in the case of a motel quarantine system. This motel
holds all patients in the case of an infection until it has been removed completely, and releases the
patients if no infection is detected.

Upon the application of a modified Reed-Frost stochastic model, we notice an upward trend in
infections per person as the capacity of the motel increases. This trend also suggests that quarantining
in this motel system results in a higher community transmission rate than what would normally be
encountered externally.

Scenario

The local regional town of Regionalville has adopted a motel quarantine system to manage the
spread of the new COVID-19 virus. All new arrivals to the town are required to quarantine in the
local Regionalville Motel. The motel is constantly filled with new arrivals. All new arrivals have
a probability of being infected with COVID-19 of 0.05 (represented in the model by η), and upon
arrival all occupants are tested for COVID-19, with results returned the next day. If any patient
tests positive, they are removed from the facility and the remaining occupants are held in the motel
until no one tests positive. If all patients test negative, they are released from the motel and a new
batch of patients is accepted.

Model

The Reed-Frost model considers interactions between susceptibles and infectives that affect the rate
of infection, in contrast to other simpler models such as the Greenwood model. We define Xt as the
number of susceptibles and Yt as the number of infectives. An individual susceptible at time t is still
susceptible at time t + 1 only if contact with all Yt infectives is avoided, which has probability αYt .
Therefore, we have

Xt+1 ∼ Bin(Xt, α
Yt), p(x,y)t,(xy)t+1 =

(
xt

xt+1

)
αytxt+1(1− αyt)yt+1 .

For more details on the Reed-Frost model, refer to [1]. We follow a modified Reed-Frost model with
p = 0.1 and β = 0.05. This means that we have a probability that there is no infection due to any
single infective of α = 1 − pβ = 0.995. We assume that the motel has a capacity of x0 people, and
there are yt infective people at any time t. This implies that xt + yt ≤ x0 for any time t, leading to
a number of “impossible states”. We also have an incoming rate of infections per person of η = 0.05,
implying that for the first day in the hotel, the number of infections is distributed Bin(x0, η).

In order to test this model, we use a Monte Carlo method, running simulations for capacities x0 =
{1, 2, . . . , 10}, and with 106 iterations/trajectories per simulation. The algorithm is as follows:

• We first draw from Bin(x0, η) to determine the number of initial infections.
• If there are 0 infections, we get a new batch.
• If there are infections, we continuously simulate community transmission according to the Reed-

Frost model (drawing from Bin(Xt, α
Yt)) until there are no more infections. Once there are no

more infections, we accept a new batch.

The code to run this model is below:
iterations = 10**6
per_day = []
per_person = []
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for x0 in range(1, 11):
infections_total = 0
for iteration in range(iterations):

# Initial parameters
x = x0
y = 0
eta = 0.05
p = 0.1
beta = 0.05
alpha = 1 - p * beta
# Number of infected so far
infected = 0
# Number of infections on "first" day (based on external)
# Here, "first" refers to a new batch of people, where the infection
# rate no longer depends on community transmission but external transmission.
y = np.random.binomial(x, eta)
infections_total += y
# Loop until there are no infected
# Note: if there are no infections, this while loop won’t be run at all
while y > 0:

# Use Reed-Frost model to calculate infections in motel
new_x = np.random.binomial(x, alpha ** y)
y = x - new_x
infections_total += y
x = new_x

# Infections per day, infections per person
pd = round(infections_total/iterations, 5)
pp = round(infections_total/(x0 * iterations), 5)
per_day.append(pd)
per_person.append(pp)
print(pd, pp)

# Plot in scatter plot
x0s = np.linspace(1, 10, 10)

plt.title("Expected no. of infections per person under modified Reed-Frost Model (Monte Carlo
with $10^6$ iterations)")

plt.xlabel(’Capacity ($x_0$)’)
plt.ylabel(’\# infections per person’)
plt.scatter(x0s, per_person)

tikzplotlib.save("assignments/stat3004-stochastic/tikz/6.tikz", \
axis_width=’8cm’, axis_height=’6cm’)

Assumptions

We have to make a number of simplifying assumptions, some of which may be oversimplifying and un-
realistic, and may require some more detailed analysis. These assumptions are detailed below.

• We assume that there is no immunity to the COVID-19 virus, and that every person has an
equal chance of getting the disease. This is an unrealistic assumption. In reality, there are a
number of factors that have been established to affect infection rate, including age, sex and
medical history. The exact effects that these characteristics have on COVID-19 rates are still
under investigation and hence this model requires more work in this area.
• We assume that there is a steady flow of arrivals into the motel. Due to the overwhelming

travel restrictions worldwide, the number of new people arriving in the town may ebb and flow
as restrictions vary.
• We assume that there are adequate health care facilities that any infected patients are able

to be transported to in the event of a positive test. In reality, the health resources of a small
regional town may be exhausted relatively quickly.
• We assume that all new arrivals will actually quarantine in the motel instead of heading home.

As seen in many real-world situations, this may not be the case.
• We assume that there are enough tests to test everyone in the motel, but as tests are already
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in short supply worldwide and are needing to be rationed, this is also unlikely.

Results

We ran our modified Reed-Frost model using a Monte Carlo simulation, with 106 iterations, and the
capacity of the hotel ranging from x0 = {1, 2, . . . , 10}. Here are the results:
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Expected no. of infections per person under modified Reed-Frost Model
(Monte Carlo with 106 iterations)

x0 Per day Per person
1 0.05007 0.05007
2 0.10121 0.05061
3 0.15208 0.05069
4 0.20445 0.05111
5 0.25650 0.05130
6 0.30951 0.05158
7 0.36195 0.05171
8 0.41641 0.05205
9 0.47052 0.05228
10 0.52609 0.05261

Conclusion

The increase in number of infections per person appears to be linear over capacity, although more
work would need to be done to confirm this hypothesis. However, one thing is clear; increasing
the capacity of the quarantine motel increases the expected rate of infections per person under this
model. We also note that all of the hotel capacities result in a higher expected rate of infections per
person than ordinary community transmission with η. Further work needs to be done in this area,
with more detailed models, to verify these hypotheses.
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