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@ Discrete stochastic processes.

@ Continuous stochastic process taking values in R.

Many real data falls into the continuous category:
Meteorological data, molecular motion, traffic data ...
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@ In 1827 the English botanist Robert Brown — pollen
grains suspended in water moved around following a
zigzag path.

@ More remarkable was the fact that pollen grains that had
been stored for a century moved in the same way.

Brownian motion in action!


http://www.youtube.com/watch?v=cDcprgWiQEY
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@ More remarkable was the fact that pollen grains that had
been stored for a century moved in the same way.

Brownian motion in action!

Robert Brown called this movement 'Brownian motion’, but he
couldn’t work out what was causing it.

@ In 1904 Einstein — Brownian motion was due to
molecules of water hitting the tiny pollen grains

@ Einstein — it was possible to work out how many
molecules were hitting a single pollen grain and how fast
the water molecules were moving.


http://www.youtube.com/watch?v=cDcprgWiQEY
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A particle is diffusing about a space R” if it experience erratic

an disordered motion through the space.
Some examples are:
o Radioactive particles diffusing through the atmosphere.
@ A rumour diffusing through a population.
For the time being we will focus on one dimensional diffusions

— The position of the observed particle at any time is a point
in ®
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Takes place in continuous time and continuous space.
o The first attempt to model it — By approximating it by a
e discrete process — Random walk:

@ At any time the position of a observed particle is contained
to move about {(ad, bd, cd) : a,b,c =0,+—1,+—1,...}
of a three-dimensional cubit lattice.

@ The distance between neighbouring points is § — fixed
positive number (very small)

@ Suppose that the particle performs a symmetric random
walk on the lattice

@ The position s, after n jumps
P(5n+1 - Sn +5€) = 1/6

if ¢ = (+—1,0,0), (0, + — 1,0),(0,0,+ — 1)
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@ Looking at the x coordinate of the particle
Sn= (5%7537 53)
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Se=S=Y_X
i=1

@ X; is an independent identically distributed sequence
P(X; = kd) — whiteboard

We are interested in the displacement of S! — S} when n is
large. In that case the CLT — the distribution of the
displacement is approximately N(0, %n62)
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@ Suppose that the jumps of the random walk —
FOEEE 7,27,37, ... with 7 > 0 time in between jumps (very

> TAT2004 small) = A very large number of jumps occur in any time
interval — the particle after some time t > 0 has elapsed.

@ By the time the particle elapsed it has experienced
n = [t/7] jumps so its x coordinate is such that
Si(t) — S*(0) ~ N(O, %t52/7-).

@ By letting 7 and ¢ go to zero the discrete random walk
maybe approach some limit whose properties have
something in common with the observe features of
Brownian motion.

o If 7,0 —> 0 then S1(t) — S(0) approaches N(0, o02t)
where 02 = 162/7.

@ Same arguments will follow for y and z
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Mathematica Simulation
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STAT2004 random displacement of Brownian motion in a rigours manner
— sometimes also called Brownian Motion..

Wiener process

It is a stochastic process W = {W; : t > 0} characterise by the
following properties:

@ W has independent increments:
Forany t; < to < t3 < tg Wy, — Wy, and Wy, — W, are
independent random variables.

o W(s+t)— W(s) ~ N(0,02t) for all s,t > 0 and 0> > 0

@ The sample paths of W are continuous.
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The wiener process W has stationary independent increments,
that is:
o the distribution of W/(t) — W(s) depends on t — s alone

e the variables W(t;) — W(s;), 1 < j < n are independent
whenever the intervals (s;, t;] are disjoint
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Two kind of statement can be made about diffusion processes
in general:
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Sample path properties
Distributional properties J

Wiener process is a Markov process
Central role in probability

Forms the basis of many other stochastic processes

It can be viewed as a continuous version of a random walk



Wiener process

Wiener
process and
Brownian
process

T ATo008 Autocovariance function of W

Cov(Ws, W;) = 0%s + 0 if 0 < s < t which is equivalent to

Cov(Ws, W;) = o?min{s, t}
forall s,t >0

i
W is continuous in mean square

E(W(s+t) — W(s)]?) = 0

as t — 0.
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© Select tyg < t; < ... < t, times for the process simulations.

@ Generate Z1,...Z, ~ N(0,1) iid random variables and
compute

K
W, = Z Vit — tke1Zi
i—1

fork=1,...,n.

Please note that this algorithm returns a discrete realisation of
the process.
Matlab simulation.
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you would want to obtain a continuous path to approximate
the exact path of the Wiener process, you could use linear
interpolation on the points Wy, ,..., W;,. That is, in each
interval [tx_1,tk], k = 1,..., n approximate the continuous
process { Wy, s € [tk—1, tk]} via:

Wtk(S — tk—l) + Wtk,l(tk — S)
(tk — tk—1)
Reference: Handbook of Monte Carlo Methdos.

W, =
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@ Supose that W(s) = x for s > 0 and x € &.
e Conditional on that L(W(t)) ~ N(x,t —s) for t >'s

Probability distribution and density functions
o F(t,yls,x) = P(W(t) < y|[W(s) = x)

1
2m(t—s)

(y=x)?

o f(t,y|s,x) = exp( — S S)) for —co <y < o0
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_ 1 y=x)?
f(t,y|s,x)—\/mexp( 2(t—s))

for —oco <y < o0

a solution of the forward and backwards equations:

ofr  10%f
ot 20y?
of  —10%*f
ds 2 0%

Certain boundary conditions need to be specified.
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Ploces The above derivatives have coefficients which are independent
SIS of x,y,s,t — Wiener process is homogeneous in space and
time.

@ The increment W(t) — W(s) is independent of W(s) for
all t > s.

@ The increments are stationary in time.

@ Wiener process — is a Markov process — Forward and
Backward equations.

@ Similar forward and backward equations exist — the
coefficients will not be constant.
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Let D = {D(t) : t > 0} a diffusion process with continuous
sample paths (a.s).

We need conditions to specify the mean and variance of the
increments D(t 4+ h) — D(t) over small time intervals (¢, t + h).
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Suppose that there exist functions a(t, x) (drift) and b(t, x)
(instantaneous variance)such that:

P(|D(t + h) — D(t)| > €|D(t) = x) = o(h) for all € >0

E(D(t + h) — D(t)|D(t) = x) = a(t,x)h + o(h)
E([D(t + h) — D(t)]?|D(t) = x) = b(t,x)h + o(h)
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F(t.yls.x) = §§P(D(t> < y|D(s) = x)

and satisfies the following partial differential equations

of of 1 92

- _ Y -7 f
5 = gyl 55 b))
of of 1 O2f

Js = —a(sax)a - Eb(S,X)@

f — specified as soon as the instantaneous mean a and
variance b are known. We don't need any further information
about the distribution of the increment. This is very convenient
in many applications where a and b are specified in a natural
manner by the physical description of the process.



