

Continuous and Discrete random process

- Discrete stochastic processes.
- Continuous stochastic process taking values in \mathbb{R} .

Many real data falls into the continuous category:
Meteorological data, molecular motion, traffic data ...

Brownian process

- In 1827 the English botanist Robert Brown → pollen grains suspended in water moved around following a zigzag path.
- More remarkable was the fact that pollen grains that had been stored for a century moved in the same way.

Brownian motion in action!

Brownian process

- In 1827 the English botanist Robert Brown → pollen grains suspended in water moved around following a zigzag path.
- More remarkable was the fact that pollen grains that had been stored for a century moved in the same way.

Brownian motion in action!

Robert Brown called this movement 'Brownian motion', but he couldn't work out what was causing it.

- In 1904 Einstein → Brownian motion was due to molecules of water hitting the tiny pollen grains
- Einstein → it was possible to work out how many molecules were hitting a single pollen grain and how fast the water molecules were moving.

Diffusion

A particle is **diffusing** about a space \mathbb{R}^n if it experience erratic and disordered motion through the space.

Some examples are:

- Radioactive particles diffusing through the atmosphere.
- A rumour diffusing through a population.

For the time being we will focus on one dimensional diffusions
→ The position of the observed particle at any time is a point in \mathbb{R}

Brownian motion

Takes place in continuous time and continuous space.

The first attempt to model it → By approximating it by a discrete process → Random walk:

- At any time the position of a observed particle is contained to move about $\{(a\delta, b\delta, c\delta) : a, b, c = 0, + - 1, + - 1, \dots\}$ of a three-dimensional cubit lattice.
- The distance between neighbouring points is $\delta \rightarrow$ fixed positive number (very small)
- Suppose that the particle performs a symmetric random walk on the lattice
- The position s_n after n jumps

$$P(S_{n+1} = S_n + \delta\epsilon) = 1/6$$

if $\epsilon = (+ - 1, 0, 0), (0, + - 1, 0), (0, 0, + - 1)$

Brownian motion

- Looking at the x coordinate of the particle
 $S_n = (S_n^1, S_n^2, S_n^3)$

$$S_n^1 - S_0^1 = \sum_{i=1}^n X_i$$

- X_i is an independent identically distributed sequence
 $P(X_i = k\delta) \rightarrow \text{whiteboard}$

We are interested in the displacement of $S_n^1 - S_0^1$ when n is large. In that case the CLT \rightarrow the distribution of the displacement is approximately $N(0, \frac{1}{3}n\delta^2)$

Brownian motion

- Suppose that the jumps of the random walk $\rightarrow \tau, 2\tau, 3\tau, \dots$ with $\tau > 0$ time in between jumps (very small) \Rightarrow A very large number of jumps occur in any time interval \rightarrow the particle after some time $t > 0$ has elapsed.
- By the time the particle elapsed it has experienced $n = [t/\tau]$ jumps so its x coordinate is such that $S^1(t) - S^1(0) \sim N(0, \frac{1}{3}t\delta^2/\tau)$.
- By letting τ and δ go to zero the discrete random walk maybe approach some limit whose properties have something in common with the observe features of Brownian motion.
- If $\tau, \delta \rightarrow 0$ then $S^1(t) - S^1(0)$ approaches $N(0, \sigma^2 t)$ where $\sigma^2 = \frac{1}{3}\delta^2/\tau$.
- Same arguments will follow for y and z

Brownian motion

Wiener
process and
Brownian
process

STAT2004

Mathematica Simulation

Wiener process

This is a diffusion process and can be used to model the random displacement of Brownian motion in a rigours manner
→ sometimes also called Brownian Motion..

Wiener process

It is a stochastic process $W = \{W_t : t \geq 0\}$ characterise by the following properties:

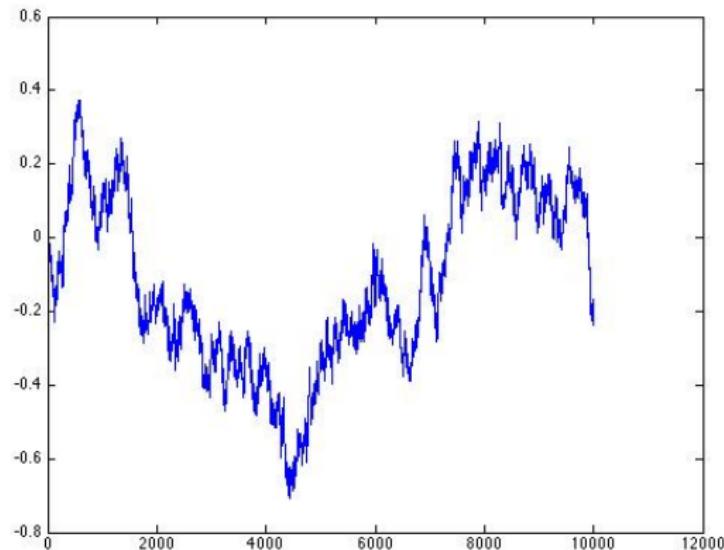
- W has independent increments:
For any $t_1 < t_2 \leq t_3 < t_4$ $W_{t_4} - W_{t_3}$ and $W_{t_2} - W_{t_1}$ are independent random variables.
- $W(s + t) - W(s) \sim N(0, \sigma^2 t)$ for all $s, t \geq 0$ and $\sigma^2 > 0$
- The sample paths of W are continuous.

Wiener process: Independent increments

The wiener process W has stationary independent increments, that is:

- the distribution of $W(t) - W(s)$ depends on $t - s$ alone
- the variables $W(t_j) - W(s_j)$, $1 \leq j \leq n$ are independent whenever the intervals $(s_j, t_j]$ are disjoint

Wiener process



Two kind of statement can be made about diffusion processes in general:

- Sample path properties
- Distributional properties

- Wiener process is a Markov process
- Central role in probability
- Forms the basis of many other stochastic processes
- It can be viewed as a continuous version of a random walk

Wiener process

Autocovariance function of W

$\text{Cov}(W_s, W_t) = \sigma^2 s + 0$ if $0 \leq s \leq t$ which is equivalent to

$$\text{Cov}(W_s, W_t) = \sigma^2 \min\{s, t\}$$

for all $s, t \geq 0$

W is continuous in mean square

$$E([W(s + t) - W(s)]^2) \rightarrow 0$$

as $t \rightarrow 0$.

Wiener process simulation in Matlab

Algorithm

- ① Select $t_0 < t_1 < \dots < t_n$ times for the process simulations.
- ② Generate $Z_1, \dots, Z_n \sim N(0, 1)$ iid random variables and compute

$$W_{t_k} = \sum_{i=1}^k \sqrt{t_k - t_{k-1}} Z_i$$

for $k = 1, \dots, n$.

Please note that this algorithm returns a **discrete** realisation of the process.

Matlab simulation.

Wiener process simulation

The previous algorithm returns only a discrete sample path. If you would want to obtain a continuous path to approximate the exact path of the Wiener process, you could use linear interpolation on the points W_{t_1}, \dots, W_{t_n} . That is, in each interval $[t_{k-1}, t_k]$, $k = 1, \dots, n$ approximate the continuous process $\{W_s, s \in [t_{k-1}, t_k]\}$ via:

$$W_s = \frac{W_{t_k}(s - t_{k-1}) + W_{t_{k-1}}(t_k - s)}{(t_k - t_{k-1})}$$

Reference: Handbook of Monte Carlo Methods.

Distribution of the Wiener process

- Suppose that $W(s) = x$ for $s \geq 0$ and $x \in \mathbb{R}$.
- Conditional on that $\mathcal{L}(W(t)) \sim N(x, t - s)$ for $t \geq s$

Probability distribution and density functions

- $F(t, y|s, x) = P(W(t) \leq y|W(s) = x)$
- $f(t, y|s, x) = \frac{1}{\sqrt{2\pi(t-s)}} \exp\left(-\frac{(y-x)^2}{2(t-s)}\right)$ for $-\infty < y < \infty$

Forward and backwards equations

The function below is a function of four variables however it can be seen as

$$f(t, y|s, x) = \frac{1}{\sqrt{2\pi(t-s)}} \exp\left(-\frac{(y-x)^2}{2(t-s)}\right)$$

for $-\infty < y < \infty$

a solution of the forward and backwards equations:

$$\frac{\partial f}{\partial t} = \frac{1}{2} \frac{\partial^2 f}{\partial y^2}$$

$$\frac{\partial f}{\partial s} = \frac{-1}{2} \frac{\partial^2 f}{\partial x^2}$$

Certain boundary conditions need to be specified.

Forward and backwards equations

The above derivatives have coefficients which are independent of $x, y, s, t \rightarrow$ Wiener process is homogeneous in space and time.

- The increment $W(t) - W(s)$ is independent of $W(s)$ for all $t \geq s$.
- The increments are stationary in time.
- Wiener process \rightarrow is a Markov process \rightarrow Forward and Backward equations.
- Similar forward and backward equations exist \rightarrow the coefficients will not be constant.

Non-homegeneous diffusion processes

Let $D = \{D(t) : t \geq 0\}$ a diffusion process with continuous sample paths (a.s).

We need conditions to specify the mean and variance of the increments $D(t + h) - D(t)$ over small time intervals $(t, t + h)$.

Suppose that there exist functions $a(t, x)$ (drift) and $b(t, x)$ (instantaneous variance) such that:

$$P(|D(t + h) - D(t)| > \epsilon | D(t) = x) = o(h) \text{ for all } \epsilon > 0$$

$$E(D(t + h) - D(t) | D(t) = x) = a(t, x)h + o(h)$$

$$E([D(t + h) - D(t)]^2 | D(t) = x) = b(t, x)h + o(h)$$

Non-homegeneous diffusion processes

Again subject to some technical conditions, if $s \leq t$ then the conditional density of $D(t)$ given $D(s) = x$

$$f(t, y|s, x) = \frac{\partial f}{\partial y} P(D(t) \leq y | D(s) = x)$$

and satisfies the following partial differential equations

$$\begin{aligned}\frac{\partial f}{\partial t} &= -\frac{\partial f}{\partial y}[a(t, y)] + \frac{1}{2} \frac{\partial^2 f}{\partial y^2}[b(t, y)f] \\ \frac{\partial f}{\partial s} &= -a(s, x)\frac{\partial f}{\partial x} - \frac{1}{2}b(s, x)\frac{\partial^2 f}{\partial x^2}\end{aligned}$$

$f \rightarrow$ specified as soon as the instantaneous mean a and variance b are known. We don't need any further information about the distribution of the increment. This is very convenient in many applications where a and b are specified in a natural manner by the physical description of the process.