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Continuous and Discrete random process

Discrete stochastic processes.

Continuous stochastic process taking values in <.

Many real data falls into the continuous category:
Meteorological data, molecular motion, traffic data ...



Wiener
process and
Brownian
process

STAT2004

Brownian process

In 1827 the English botanist Robert Brown → pollen
grains suspended in water moved around following a
zigzag path.

More remarkable was the fact that pollen grains that had
been stored for a century moved in the same way.

Brownian motion in action!

http://www.youtube.com/watch?v=cDcprgWiQEY
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Brownian process

In 1827 the English botanist Robert Brown → pollen
grains suspended in water moved around following a
zigzag path.

More remarkable was the fact that pollen grains that had
been stored for a century moved in the same way.

Brownian motion in action!

Robert Brown called this movement ’Brownian motion’, but he
couldn’t work out what was causing it.

In 1904 Einstein → Brownian motion was due to
molecules of water hitting the tiny pollen grains

Einstein → it was possible to work out how many
molecules were hitting a single pollen grain and how fast
the water molecules were moving.

http://www.youtube.com/watch?v=cDcprgWiQEY
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Diffusion

A particle is diffusing about a space <n if it experience erratic
an disordered motion through the space.
Some examples are:

Radioactive particles diffusing through the atmosphere.

A rumour diffusing through a population.

For the time being we will focus on one dimensional diffusions
→ The position of the observed particle at any time is a point
in <
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Brownian motion

Takes place in continuous time and continuous space.
The first attempt to model it → By approximating it by a
discrete process → Random walk:

At any time the position of a observed particle is contained
to move about {(aδ, bδ, cδ) : a, b, c = 0,+− 1,+− 1, ...}
of a three-dimensional cubit lattice.

The distance between neighbouring points is δ → fixed
positive number (very small)

Suppose that the particle performs a symmetric random
walk on the lattice

The position sn after n jumps

P(Sn+1 = Sn + δε) = 1/6

if ε = (+− 1, 0, 0), (0,+− 1, 0), (0, 0,+− 1)
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Brownian motion

Looking at the x coordinate of the particle
Sn = (S1

n , S
2
n , S

3
n )

S1
n − S1

0 =
n∑

i=1

Xi

Xi is an independent identically distributed sequence
P(Xi = kδ)→ whiteboard

We are interested in the displacement of S1
n − S1

0 when n is
large. In that case the CLT → the distribution of the
displacement is approximately N(0, 13nδ

2)
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Brownian motion

Suppose that the jumps of the random walk →
τ, 2τ, 3τ, . . . with τ > 0 time in between jumps (very
small) ⇒ A very large number of jumps occur in any time
interval → the particle after some time t > 0 has elapsed.

By the time the particle elapsed it has experienced
n = [t/τ ] jumps so its x coordinate is such that
S1(t)− S1(0) ∼ N(0, 13 tδ

2/τ).

By letting τ and δ go to zero the discrete random walk
maybe approach some limit whose properties have
something in common with the observe features of
Brownian motion.

If τ, δ → 0 then S1(t)− S1(0) approaches N(0, σ2t)
where σ2 = 1

3δ
2/τ .

Same arguments will follow for y and z
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Brownian motion

Mathematica Simulation
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Wiener process

This is a diffusion process and can be used to model the
random displacement of Brownian motion in a rigours manner
→ sometimes also called Brownian Motion..

Wiener process

It is a stochastic process W = {Wt : t ≥ 0} characterise by the
following properties:

W has independent increments:
For any t1 < t2 ≤ t3 < t4 Wt4 −Wt3 and Wt2 −Wt1 are
independent random variables.

W (s + t)−W (s) ∼ N(0, σ2t) for all s, t ≥ 0 and σ2 > 0

The sample paths of W are continuous.
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Wiener process: Independent increments

The wiener process W has stationary independent increments,
that is:

the distribution of W (t)−W (s) depends on t − s alone

the variables W (tj)−W (sj), 1 ≤ j ≤ n are independent
whenever the intervals (sj , tj ] are disjoint
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Wiener process
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Wiener process

Two kind of statement can be made about diffusion processes
in general:

Sample path properties

Distributional properties

Wiener process is a Markov process

Central role in probability

Forms the basis of many other stochastic processes

It can be viewed as a continuous version of a random walk



Wiener
process and
Brownian
process

STAT2004

Wiener process

Autocovariance function of W

Cov(Ws ,Wt) = σ2s + 0 if 0 ≤ s ≤ t which is equivalent to

Cov(Ws ,Wt) = σ2min{s, t}

for all s, t ≥ 0

W is continuous in mean square

E ([W (s + t)−W (s)]2)→ 0

as t → 0.
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Wiener process simulation in Matlab

Algorithm

1 Select t0 < t1 < . . . < tn times for the process simulations.

2 Generate Z1, . . .Zn ∼ N(0, 1) iid random variables and
compute

Wtk =
k∑

i=1

√
tk − tk−1Zi

for k = 1, . . . , n.

Please note that this algorithm returns a discrete realisation of
the process.
Matlab simulation.
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Wiener process simulation

The previous algorithm returns only a discrete sample path. If
you would want to obtain a continuous path to approximate
the exact path of the Wiener process, you could use linear
interpolation on the points Wt1 , . . . ,Wtn . That is, in each
interval [tk−1, tk ], k = 1, . . . , n approximate the continuous
process {Wx , s ∈ [tk−1, tk ]} via:

Ws =
Wtk (s − tk−1) + Wtk−1

(tk − s)

(tk − tk−1)

Reference: Handbook of Monte Carlo Methdos.
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Distribution of the Wiener process

Supose that W (s) = x for s ≥ 0 and x ∈ <.

Conditional on that L(W (t)) ∼ N(x , t − s) for t ≥ s

Probability distribution and density functions

F (t, y |s, x) = P(W (t) ≤ y |W (s) = x)

f (t, y |s, x) = 1√
2π(t−s)

exp
(
− (y−x)2

2(t−s)

)
for −∞ < y <∞



Wiener
process and
Brownian
process

STAT2004

Forward and backwards equations

The function below is a function of four variables however it
can been seen as

f (t, y |s, x) =
1√

2π(t − s)
exp
(
− (y − x)2

2(t − s)

)
for −∞ < y <∞

a solution of the forward and backwards equations:

∂f

∂t
=

1

2

∂2f

∂y2

∂f

∂s
=
−1

2

∂2f

∂x2

Certain boundary conditions need to be specified.
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Forward and backwards equations

The above derivatives have coefficients which are independent
of x , y , s, t → Wiener process is homogeneous in space and
time.

The increment W (t)−W (s) is independent of W (s) for
all t ≥ s.

The increments are stationary in time.

Wiener process → is a Markov process → Forward and
Backward equations.

Similar forward and backward equations exist → the
coefficients will not be constant.
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Non-homegeneous diffusion processes

Let D = {D(t) : t ≥ 0} a diffusion process with continuous
sample paths (a.s).
We need conditions to specify the mean and variance of the
increments D(t + h)−D(t) over small time intervals (t, t + h).

Suppose that there exist functions a(t, x) (drift) and b(t, x)
(instantaneous variance)such that:

P(|D(t + h)− D(t)| > ε|D(t) = x) = o(h) for all ε > 0

E (D(t + h)− D(t)|D(t) = x) = a(t, x)h + o(h)

E ([D(t + h)− D(t)]2|D(t) = x) = b(t, x)h + o(h)
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Non-homegeneous diffusion processes

Again subject to some technical conditions, if s ≤ t then the
conditional density of D(t) given D(s) = x

f (t, y |s, x) =
∂f

∂y
P(D(t) ≤ y |D(s) = x)

and satisfies the following partial differential equations

∂f

∂t
= −∂f

∂y
[a(t, y)] +

1

2

∂2

∂y2
[b(t, y)f ]

∂f

∂s
= −a(s, x)

∂f

∂x
− 1

2
b(s, x)

∂2f

∂x2

f → specified as soon as the instantaneous mean a and
variance b are known. We don’t need any further information
about the distribution of the increment. This is very convenient
in many applications where a and b are specified in a natural
manner by the physical description of the process.


