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Wiener process: Brownian motion

Wiener process

It is a stochastic process W = {Wt : t ≥ 0} with the following
properties:

W has independent increments:
For all times t1 ≤ t2 . . . ≤ tn the random variables
Wtn −Wtn−1 ,Wtn−1 −Wtn−2 , . . . ,Wt2 −Wt1 are
independent random variables.

It has stationary increments: The distribution of the
increment W (t + h)−W (t) does not depende on t.

W (s + t)−W (s) ∼ N(0, σ2t) for all s, t ≥ 0 and σ2 > 0.

The process W = {Wt : t ≥ 0} has almost surely
continuos sample paths.
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Example:

Suppose that W is a Brownian motion or Wiener process and
U is an independent random variable which is uniformly
distributed on [0, 1]. Then the process

W̃ =

{
W (t), if t 6= U

0, if t = U

Same marginal distributions as a Wiener process.

Discountinuous if W (U) 6= 0 with probability one.

Hence this process is not a Brownian motion. The continuity of
sample paths is essential for Wiener process → cannot jump
over any valule x but must pass through it!
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Wiener process: Brownian motion

The process W is called standard Wiener process if σ2 = 1
and if W (0) = 0.

Note that if W is non-standard →
W1(t) = (W (s)−W (0))/σ is standard.

We also have seen that W → Markov property/ Weak
Markov property:
If we know the process W (t) : t ≥ 0 on the interval [0, s],
for the prediction of the future {W (t) : t ≥ s}, this is as
useful as knowing the endpoint X (s).

We also have seen that W → Strong Markov property:
The same as above holds even when s is a random
variable if s is a stopping time.

Reflexion principle
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Reflexion principle and other properties

First passage times → stopping times.
First time that the Brownian process hits a certain value

Density function of the stopping time T (x)

We studied properties about the maximum of the Wiener
process:

The random variable M(t) = max{W (s) : 0 ≤ s ≤ t} →
same law as |W (t)|.
We studied the probability that the standard Wiener
returns to its origin in a given interval
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Properties when the reflexion principle does not
hold

The study of first passage times → lack of symmetry properties
for the diffusion process

We learnt how to definite a martingale based on a
diffusion process:

U(t) = e−2mD(t) → martingale

Used that results to find the distribution of the first
passage times of D
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Barriers

Diffusion particles → have a restricted movement due to
the space where the process happends.

Pollen particles where contained in a glass of water for
instance.

What happend when a particle hits a barrier?

Same as with random walks we have two situations:

Absorbing
Reflecting
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Example: Wiener process

Let W be the standard Wiener process.

Let w ∈ <+ positive constant.

We consider the shifted process w + W (t) which starts at
w .

Wiener process W a absorbed at 0

W a(t) =

{
w + W (t), if t ≤ T

0, if t ≥ T

with T = inf {t : w + W (t) = 0} being the hitting time of the
position 0.

W r (t) = W r (t) = |w + W (t)| is the Wiener process reflected
at 0.
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Example: Wiener process

W a and W r satisfy the forward and backward equations,
if they are away from the barrier.

In other words, W a and W r are diffusion processes.

Transition density for W a and W r?

Solving the diffusion equations subject to some suitable
boundary conditions.
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Example: Transition densities for the Wiener
process

Diffusion equations for the Wiener process:

Let f (t, y) denote the density function of the random variable
W (t) and consider W a and W r as before.

The density function of W a(t). is

f a(t, y) = f (t, y − w)− f (t, y + w), y > 0

The density function of W r (t) is

f r (t, y) = f (t, y − w) + f (t, y + w), y > 0.

where the funtioon f (t, y) is the N(0, t) density function.
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Example: Wiener process with drift

Suppose that we are looking into the Wiener process with drift
so that
a(t, x) = m and b(t, x) = 1 for all t and x .

Suppose that there is an absorbing barrier at 0.

Suppose D(0) = d > 0

Aim : find a solution g(t,y) to the foward equation

∂g

∂t
= −m∂g

∂y
+

1

2

∂2g

∂y2

for y > 0 subject to

g(t, 0) = 0, t ≥ 0

g(0, y) = δd(y) , y ≥ 0

with δd to Dirac δ centered at d .
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Example: Wiener process with drift

We saw that the Wiener process with drift is the solution of the
forward and backward equations and we saw that in general

g(t, x |x) =
1√
2πt

exp
(
− (y − x −mt)2

2t

)
Now what we need is to find a linear combination of such
functions g(·, ·|x) which satisfy the boundary conditions.

Solution:

f a(t, y) = g(t, y |d)− e−2mdg(t, y | − d); y > 0.

Assuming uniqueness, that is the density function of Da(t).
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Example: Wiener process with drift

Now let’s see how is the density function of the time T until
the absorption of the particle.

At time t either the process has been absorbed or its
position has density

f a(t, y) = g(t, y |d)− e−2mdg(t, y | − d); y > 0.

P(T ≤ t) = 1−
∫ ∞
0

f a(t, y)dy = 1−Φ(
mt + d√

t
)+e−2mdΦ(

mt − d√
t

)

Taking derivatives:

fT (t) =
d√

2πt3
exp
(
− (d + mt)2

2t

)
, t > 0

& P(absorption take place) = P(T <∞) =

{
1, if m ≤ 0

e−2md , if m > 0
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Browinian Bridge

We are interested in properties of the Wiener process
conditioned on special events.

Question

What is the probability that W has no zeros in the time interval
(0, v ] given that it has none in the smaller interval (0, u]?

Here, we are considering the Wiener process
W = {W (t) : t ≥ 0} with W (0) = w and σ2 = 1.
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Browinian Bridge

We are interested in properties of the Wiener process
conditioned on special events.

Question

What is the probability that W has no zeros in the time interval
(0, v ] given that it has none in the smaller interval (0, u]?

If w 6= 0 then the answer is

P(no zeros in (0, v ]|W (0) = w)/P(no zeros in (0, u]|W (0) = w)

we can compute each of those probabilities by using the
distribution of the maxima.
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Browinian Bridge

If w = 0 then both numerator and denominator → 0

limw→0
P(no zeros in (0, v ]|W (0) = w)

P(no zeros in (0, u]|W (0) = w)
=

limw→0
gw (v)

gw (u)

where gw (x)→ is the probability that a Wiener process
starting at W fails to reach 0 at time x . It can be shown by
using the symmetry priciple and the theorem for the density of
M(t) that

gw (x) =

√
2

πx

∫ |w |
0

exp(−frac12m2/x)dm.

Then gw (v)/gw (u)→
√

u/v as w → 0
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Excursion

An “excursion” of W is a trip taken by W away from 0

Definition

If W (u) = W (v) = 0 and W (t) 6= 0 for u < t < v then the
trajectory of W during the interval [u, v ] is called an excursion
of the process.
Excursions are positive if W > 0 throughout (u, v) and
negative otherwise.
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Martingales and Excursions

Excursions martingale

Let Y (t) =
√

Z (t)sign{W (t)} and
Ft = sigma({Y (u) : 0 ≤ u ≤ t}). Then (Y ,F) is a martingale.

The probability that the standard Wiener process W has a
positive excursion of total duration at least a before it has a
negative excursion of total duration at least b is√
b/(
√
a +
√
b).
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Brownian Bridge

Let B = {B(t) : 0 ≤ t ≤ 1} be a process with continuous
sample paths and the same fdds as {W (t) : 0 ≤ t ≤ 1}
conditoned on W (0) = W (1) = 0. The process B is a diffusion
process with drift a and instantaneous variance b given by
a(t, x) = − x

1−t and b(t, x) = 1, x ∈ <, 0 ≤ t ≤ 1.

The Brownian Bridge has the same instantaneous variance as
W but its drift increasing in magnitude as t → 1 and it has the
effect of guiding the process to its finishing point B(1) = 0
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Stochastic differential equations and Diffusion
Processes

A stochastic differential equation for a stochastic process
{Xt , t ≥ 0} is an expression of the form

dXt = a(Xt , t)dt + b(Xt , t)dWt

where {Wt , t ≥ 0} is a Wiener process and a(x , t) (drift) and
b(x , t) (diffusion coefficient) are deterministic functions.

{Xt , t ≥ 0} is a Markov process with continuous sample
paths → it is an Itô diffusion.

Stochastic differential equations share similar principles as
ordinary differential equations by relating an unknown function
to its derivatives but with the difference that part of the
unknown function includes randomness.
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Stochastic differential equations and the Chain rule

We are going to see how to derive a differential equation as the
one before.

Consider the process Xt = f (Wt) to be a function of the
standard Wiener process.

The standard chain rule → dXt = f
′
(Wt)dWt → incorrect

in this contest.

If f is sufficiently smooth by Taylor’s theorem

Xt+δt − Xt = f
′
(Wt)(δWt) +

1

2
f
′′

(Wt)(δWt)
2) + . . .

where δWt = Wt+δt −Wt

In the usual chain rule → it is used Wt+δt −Wt = o(δt).

However in the case here (δWt)
2 has mean δt so we can

not applied the statement above.
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Stochastic differential equations and the Chain rule

Solution

We approximate (δWt)
2 by δt ⇒ the subsequent terms in the

Taylor expansion are insignificant in the limit as δt → 0

dXt = f
′
(Wt)dWt +

1

2
f
′′

(Wt)dt

being that an special case of the Ito’formula and

Xt − X0 =
∫ t
0 f ′(Ws)dWs +

∫ t
0

1
2 f
′′

(Ws)ds
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Stochastic differential equations and Diffusion
Processes

dXt = a(Xt , t)dt + b(Xt , t)dWt

Expresses the infinitesimal change in dXt at time t as the sum
of infinitesimal displacement a(Xt , t)dt and some noise
b(Xt , t)dWt .

Mathematically

The stochastic process {Xt , t ≥ 0} satisfies the integral
equation

Xt = X0 +

∫ t

0
a(Xs , s)dx +

∫ t

0
b(Xs , s)dWs.

The last integral is the so called Ito integral.
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Stochastic calculus and Diffusion Processes

We have seen the diffusion process D = {Dt : t ≥ 0} as a
Markov process with continuous sample paths having
“instantaneous mean” µ(t, x) and “instantaneous variance”
σ(t, x).

The most standard and fundamental diffusion process is
the Wiener process

W = {Wt : t ≥ 0}

with instantaneous mean 0 and variance 1.

dDt = µ(t,Dt)dt + σ(t,Dt)dWt

which is equivalent to

Dt = D0 =

∫ t

0
µ(s,Ds)dx +

∫ t

0
σ(s,Ds)dWs
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Example: Geometric Wiener process

Suppose that Xt is the price from some stock or commodity at
time t.

How can we represent the change dXt over a small time
interval (t, t + dt)?

If we assume that changes in the price are proportional to the
price and otherwise they appear to be random in sign and
magnitude as the movements of a molecule. we can model this
by

dXt = bXtdWt

or by

Xt − X0 =

∫ t

0
bXsdWs

for some constant b. This is called the geometric Wiener
process.
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Interpretation of the stochastic integral

Let’s see how we can interprete∫ t

0
WsdWs

Consider t = nδ with δ being small and positve.

We partition the interval (0, t] into intervals (jδ, (j + 1)δ]
with 0 ≤ j < n.

If we take θj ∈ [jδ, (j + 1)δ], we can consider

In =
n−1∑
j=0

Wθj

(
W(j+1)δ −Wjδ

)
If we think about the Riemann integral → Wjδ,Wθj and
W(j+1)δ should be close to one antoher for In to have a
limit as n→∞ independent of the choice of θj



Wiener
process and
Brownian
process

STAT4404

Interpretation of the stochastic integral

However, in our case, the Wiener process W has sample
paths with unbounded variation.

It is easy to see

2In = W 2
t −W 2

0 − Zn

where Zn =
∑n−1

j=0 (W(j+1δ) −Wjδ)2

Implying E (Zn − t)2 → 0 as n→∞ (Zn → t in mean
square).

So that In → 1
2(W 2

t − t) in mean square as n→∞∫ t

0
WsdW =

1

2
(W 2

t − t)

That is an example of an Ito Integral


