3. a) Recall that the identity function for the integers is iZ:
ZZ
where iZ(x) = x for all x
Z.
( f o iZ )(x) = f (iZ(x)) = f (x) = x + 1.
( iZ o f )(x) = iZ( f (x)) = iZ(x + 1) = x + 1.
b) If g: XX
is any function, the functions g o iX
and iX o g are both
equal to the function g.
( g o iX )(x) = g( iX(x)) = g(x) and ( iX o g )(x) = iX( g(x)) = g(x).