Closure For all x,y
Z7 we have x + y
Z7 and so Z7 is closed under addition modulo 7.
[0]+[0]=[0]   [0]+[1]=[1]   [0]+[2]=[2]   [0]+[3]=[3]  
[0]+[4]=[4]   [0]+[5]=[5]   [0]+[6]=[6]
[1]+[0]=[1]   [1]+[1]=[2]   [1]+[2]=[3]   [1]+[3]=[4]  
[1]+[4]=[5]   [1]+[5]=[6]   [1]+[6]=[0]
[2]+[0]=[2]   [2]+[1]=[3]   [2]+[2]=[4]   [2]+[3]=[5]  
[2]+[4]=[6]   [2]+[5]=[0]   [2]+[6]=[1]
[3]+[0]=[3]   [3]+[1]=[4]   [3]+[2]=[5]   [3]+[3]=[6]  
[3]+[4]=[0]   [3]+[5]=[1]   [3]+[6]=[2]
[4]+[0]=[4]   [4]+[1]=[5]   [4]+[2]=[6]   [4]+[3]=[0]  
[4]+[4]=[1]   [4]+[5]=[2]   [4]+[6]=[3]
[5]+[0]=[5]   [5]+[1]=[6]   [5]+[2]=[0]   [5]+[3]=[1]  
[5]+[4]=[2]   [5]+[5]=[3]   [5]+[6]=[4]
[6]+[0]=[6]   [6]+[1]=[0]   [6]+[2]=[1]   [6]+[3]=[2]  
[6]+[4]=[3]   [6]+[5]=[4]   [6]+[6]=[5]
Associativity
For all x,y,z
Z7 we have (x + y) + z = x + ( y + z) since addition is
associative.
Identity
For all x
Z7 we have x + [0] = x = [0] + x. Hence [0] is the identity
element under addition modulo 7.
Inverse
For all x
Z7 we have x + (7-x) = [0] = (7-x) + x, where 7-x is the usual
operation of subtraction on the integers.
Hence 7-x is the inverse of the element x.
We can explicitly give the inverses:
[0]-1 = [0];
[1]-1 = [6];
[2]-1 = [5];
[3]-1 = [4].
[4]-1 = [3];
[5]-1 = [2];
[6]-1 = [1].
Notice that in any group, the inverse of the inverse of an element x is x;
that is, (x-1)-1 = x.